Low-Cost Gas Heat Pump for Building Space Heating

2016 Building Technologies Office Peer Review

U.S. DEPARTMENT OF

ENERG

Energy Efficiency & Renewable Energy

Michael Garrabrant mgarrabrant@stonemtntechnologies.com Stone Mountain Technologies, Inc.

Project Summary

Timeline:

Start date: March 01, 2013 End date: August 31, 2015

Key Milestones:

- 1. Cycle & System Design: 12/31/2014
- 2. Breadboard Test Results:
- 3. Alpha Packaged Proto Results: 04/01/2015
- 4. Beta Packaged Proto Results: 08/31/2015

Budget:

Total DOE \$ to date: **\$901,842** Total future DOE \$: **\$0** (\$1,028 under budget)

Target Market/Audience:

Residential & Light Commercial Space Heating Light Commercial Potable Water Heating Simultaneous Water Heating/Space Cooling

Key Partners:

A.O. Smith

Gas Technology Institute

Project Goal:

12/31/2014

Develop and demonstrate a gas-fired absorption heat pump, with heating COP's greater than 1.0 at low ambients. Design simplicity and volume manufacturing requirements emphasized from conception. Achieving a projected 2-5 year economic payback to drive market penetration is a higher priority than ultra-high efficiency.

What We Use For Gas Heating Has Not Changed Much

Furnaces | Boilers | Water Heaters Non-Condensing Models Are 75 – 83% Efficient Condensing Models Are 90 – 98% Efficient

Direct Fired @ Maximum Efficiency OEM Product Differentiation? Efficiency Program Incentives?

Need COP >> 1.0 Must Work at Low Ambients Must be Economically Viable

Gas Absorption Heat Pumps

Excellent Heating Efficiencies Even at Low Ambients

Problem: Historically Complex Cycles and High Cost

80,000 Btu/hr (23 kW) @ 47°F

COP = 1.40	47°F (8.3°C)
COP = 1.35	32°F (0°C)
COP = 1.30	17ºF (-8.3ºC)
COP = 1.20	-13ºF (-25ºC)

- * COP @ HHV of gas
- Parasitic Power < 750 watts</p>
- * Condensing Combustion Efficiencies
- * At least 3:1 Modulation
- * 20°F (11.1°C) Hydronic Differential
- Consumer Price ~\$4,500

TARGET APPLICATIONS

- Residential Space & Water Heating (cool/cold climates)
 - ✤ 3.5 Quads (185.5 Million Metric Ton CO₂) (65% Cool Climate Zones)
- Commercial Space & Water Heating (all climates)
- Commercial Simultaneous Water Heating & Space Cooling (all climates)
- Pool Heating
- New Construction & Retrofit

How Does It Work?

 $COP_h = Qcond/E_{in} = 3.0-4.0$

Qheat = ~1.2 x Qevap

 $COP_h = (Qcond + Qabs)/Q_{in} = 1.4-2.0$ Qheat = (Qcond + Qabs) ~ 2.5 times Qevap

Capacity & COP Remain High at Low Ambient Temperatures

Gas Absorption's Renewable Energy Content: 35%

Target Customers for SMTI Thermal Compressor:

HVAC & Water Heating OEMs That Want to Offer Gas Heat Pump Products

U.S. based manufacturing, family of Thermal Compressor products

Winter 2015/2016: Winter 2016/2017: FY2018: Controlled Field Testing, Reliability Customer Agreement(s) in Place, Large Field Test, DFM, Vendor Qualifications Certification and Production Start

Approach

- <u>Simple Cycle</u>, optimized for cost and reliability.
- Commonality of raw material, processes, and scalability.
- <u>Total Cost Focus</u> from beginning.
- Optimization of evaporator coil (highest cost component).
- Breadboard development, then packaged prototype.
- Parallel development of controls and design for modulation.
- **3**rd Party validation of Packaged Prototype performance.
- OEM and Natural Gas Industry Partners to Ensure Market Acceptance & Education

Key Issues:

- **Evaporator Coil Design:** Validation of design model to ensure we arrive at optimized design for packaged prototype (achieve target cost and performance).
- **Rectifier Performance:** Achieving target ammonia purity using simple, low-cost design.
- Scalability of Low-Cost Solution Pump
- **System Behavior**: Understanding system behavior, especially at start-up and reduced load conditions (controls development for *modulation*, important for real-life seasonal energy efficiency and customer satisfaction).

Progress and Accomplishments

Accomplishments:

- ✓ Optimized Simple Single-Effect Cycle That Predicts Target Performance.
- ✓ Breadboard Testing: 95% Performance Target and 4:1 Modulation Achieved
- Evaporator Design Model Developed and Verified w/Experimental Data
 Optimized coil ~25% cost reduction from original design
- ✓ Low-Cost Solution Pump Successfully Scaled Up Factor of 10.
- Alpha 1 Packaged Prototype Fabricated & Lab Tested: 97% Target
 Performance Verified By Gas Technology Institute (GTI), 4:1 Modulation
- ✓ Alpha 2 Packaged Prototype Fabricated & Lab Tested: 97% Target
 - Reduced Parasitic Power ~15%
 - Modulating Evaporator Fan
 - ✤ Achieved 160° F Supply Water Temperature
 - Trialed ECM Solution Pump Motor for Additional Parasitic Power Reduction
- ✓ Manufacturing cost estimate is within our target range.

Progress and Accomplishments

Alpha 1

GTI Testing Alpha 1

Progress and Accomplishments: Alpha 1

GTI

Ambient Temperature (°F)	COP_gas	Capacity (Btu/hr)	Hydronic ΔT (°F)
47	1.50	79,584	22.5
35	1.44	79,703	19.7
17	1.37	71,919	17.9
-13	1.17	55,746	14.7

SMTI

Ε

Progress and Accomplishments: Alpha 2

40%

60%

Gas Input Rate

80%

0%

20%

100%

120%

Progress and Accomplishments

GTI Building Energy Simulation: Comparison to 80% Furnace Baseline

Project Integration and Collaboration

Project Integration:

- Market-leading OEM was a sub-contractor and providing cost-share.
- Gas Technology Institute was a sub-contractor and providing cost-share through contributions from gas utilities.
- GTI kept gas utility sponsors updated via bi-annual meetings and informal communications.

Partners, Subcontractors, and Collaborators:

- **AO Smith (OEM):** Provides component design, fabrication, testing support, market research, and cost share to the project.
- **GTI:** Provides combustion system design and testing, system performance testing, cost share and gas utility communication.

Communications:

ACEEE Hot Water Forums, Energy Solutions Center Annual Meetings, CEE conference call presentation, GTI bi-annual meetings with gas utility research sponsors, International Sorption Heat Pump Conference. Planned: Purdue Conference & ASHRAE.

Next Steps and Future Plans

Alpha 1 Field Test @ SMTI (GTI Monitoring)

Alpha 2 Field Test (combi) (GTI Monitoring)

Beta 1-2 are being fabricated: Advanced testing & reliability

Ready for larger scale field test, Winter of 2016/2017.

Project Budget

Project Budget: \$902,870 (Fed) + \$232,294 (CS) = \$1,135,164

Variances: Six month no-cost extension.

Cost to Date:Federal:\$901,842 of \$902,870 (99.9 %)Cost Share:\$303,240 of \$260,508 (116 %)

Budget History									
<mark>03/01/13</mark> – FY2015 (past)		FY2 (cur	016 rent)	FY2017 (planned)					
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share				
\$901,842	\$303,240								

Project Plan and Schedule

Project Schedule	-											
Project Start: 03/01/2013		Completed Work										
Projected End: 08/31/2015		Active Task (in progress work)										
		Milestone/Deliverable (Originally Planned) use for miss								misse	ed	
		Mile	stone,	/Deliv	erable	e (Acti	ual) <mark>us</mark>	se whe	en me	t on ti	me	
		FY2013 FY2014							FY2015			
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work										•		
M1: Cycle Modeling												
M2: Cycle Heat HX and Combustion Design												
M3: Solution Pump Design and Testing												
M4: Breadboard Fabrication												
M5: Breadboard Testing												
M6: Condensing HX Prototype Testing												
M7: Packaged Prototype Fab & Assy												
Current/Future Work												
M8: Packaged Prototype Preliminary Testing												
M9: Packaged Prototype 1 Final Testing												
M9: Packaged Prototype 2 Final Testing												
M10: Packaged Prototype 3rd Party Testing				Ι								