Heat Pump Water Heater Using Solid-State Energy Converters

2016 Building Technologies Office Peer Review

Uttam Ghoshal, ghoshal@sheetak.com Sheetak Inc.

Project Summary

Timeline:

Start date: 11/15/2012

Planned end date: 5/14/2016

Key Milestones:

- 1. Development of Bottom Mount 4-Engine Thermoelectric Heat Pump; 5/14/2014
- Development of High Cooling Power Thermoelectric Modules for Heat Pumps; 5/14/2015
- 3. Performance (COP > 1.1) and Reliability Thermoelectric Heat Pumps ; 6/14/2016

Budget:

Total DOE \$ to date: \$1,149,900.00

Total future DOE \$: \$0.00

Target Market/Audience:

Home Water Heaters with Affordable, Reliable Solid-State Heat Pumps

Key Partners:

Whirlpool Appliance (Consultation for Specs)

Project Goal:

Demonstrate a home water heater product with affordable and reliable solid-state heat pumps with COP > 1.1 The project includes development of high cooling power thermoelectric modules as well as development of bottom-mount 4-engine and 8-engine heat pumps.

Purpose and Objectives

Residential Water Heaters

- 15% of energy consumption. 45% are electric heaters: ~ 1.34 Quads s1250 of primary energy
- \$300-\$700 per year energy cost
- Vapor compression based heat pump water heater are very expensive, and limiting in modularity and flexibility

Sheetak's Solution

Low-Cost Thermoelectric (TE) Heat Pump Water Heater

\$1000

\$500

\$250

Resistive Heater

1

2

COP

TE Heat

Pump

Heat Pump Water Heaters

Proposed solution

3

Impact of the Project

- Demonstration of first TE-based 50 gallon heat pump water heater
- COP >> 1.1 (goal of the SBIR was COP > 1.1)
- High volume manufacturing of thermoelectric coolers and heat pumps for refrigeration and heat pump applications
- Development of novel system-level hardware including selfcontrollers and fault-tolerant heat-pumps
- Cost-effective modular heat pump water heater
- Achievements
 - COP > 1.5 with modular plug-in thermoelectric engines
 - Long term: Launch of TE based water heater in the market

Original Thermoelectric Heat Pump Water Heater Concept

Thermoelectric Cold Side (Heat-Pipe Heat Sink)

Plug-In Thermoelectric Heat Pump Water Heater

- Modular, scalable, and compatible addresses needs for capacities 0-100 gallons
- Self controlled loops
- High COP

Water Heater Operation for I_{TEC} = 6A

Fig. (a) Difference between the 6 Cold Chuck temperatures decreases for t > 0.9 hrs.

Fig. (b) Hot Chuck temperatures (for t < 0.2 hours, the thermocline in the container prevent hot temperatures from rising)

Fig. (c) Heat pumping decreases as ΔT_{TEC} increases (@ t = 1.3 hrs $\Delta T_{TEC} \sim 46^{\circ}C - 53^{\circ}C$

Fig. (d) Decrease in heat pumping is indicated as $(T_{cold-outlet} - T_{cold-inlet}) \rightarrow 0$ Average $(T_{hold-inlet}, T_{hot-outlet})$ is indicated by the dotted line.

Water Heater Operation for $I_{TEC} = 3A$

Fig. (a) Difference between the 6 Cold Chuck temperatures decreases for t > 1.5 hrs.

Fig. (b) Hot Chuck temperatures are closer to each other as compared to I_{TEC} = 6A

Fig. (c) Heat pumping \rightarrow 0 $\Delta T_{TEC} \rightarrow \Delta T_{max}$ (I = 3A). After 3 hours, $\Delta T_{TEC} \sim 36^{\circ}C$ - 38°C.

Fig. (d) Decrease in heat pumping is indicated as $(T_{cold-outlet} - T_{cold-inlet}) \rightarrow 0$ Average $(T_{hold-inlet}, T_{hot-outlet})$ is indicated by the dotted line. $(T_{hot-inlet} - T_{hot-outlet}) \sim$ 2°C for t > 2.5 hrs

Measured Coefficient of Performance (COP)

Renewable Energy

NERGY

Ξ

Industry-Best Cooling Chips

- Lowest Power Consumption $(\sim \frac{1}{2})$
- Tunable Cooling Density(1-100 W/cm²) Enables battery-based portables **
- High Reliability (MTBF >> 100,000 h)
- High Volume Manufacturing (> 2M pa) ↔ Fault-tolerant
- Flexible–Geometry Complaint
- - Mechanically robust

Disruptive Wafer-Level Processes

Bi, Sb, Te, Se

Dicing Plating

TRADITIONAL

Transformative Assembly Methods

Volumes <1M

Accomplishments

- Bottom-mount TE heat pump water heaters fabricated and demonstrated
- High volume, high efficiency thermoelectric cooler manufacturing capability for heat pumps established
- Novel modular heat pumps for add-on/plug-in applications demonstrated and tested

Challenges

- Funding for high volume thermoelectric heat pump manufacturing in the US and globally
- Industrial design, controllers for modular fault-tolerant heat pumps with fluid pumps with > 20 years MTBF

Commercialization Strategy

- Initial contacts with Whirlpool in the US and Godrej & Boyce in India
 - Whirlpool for store branded heaters in the US and Asia
 - Godrej and Boyce for developing world markets (India) that focuses on small water capacity
- Commercialization focus for 2016:
 - Leverage beverage refrigeration to manufacture efficient TECs in high volumes and establish revenues
 - Develop industrial designs for plug-in water heater heat pumps and systems for commercialization
 - License system technology for modular heat pumps to water heater appliance manufacturers, and provide volume sourcing of heat pumps

- Become the leader in high volume manufacturing of efficient thermoelectric heat pumps for refrigeration, water cooling and water heating
- Develop self-controllers for modular heat pumps and extend the plug-in capabilities for variety of cooling/heating applications
- Partner with appliance manufacturers for licensing and sales

REFERENCE SLIDES

Project Budget: \$1,149,900.00 Variances: None Cost to Date: \$926,897.49 Additional Funding: N/A

Budget History										
11/15/2012 – FY2015 (past)		FY20 (curre		FY2017 (planned)						
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share					
\$649,924.57	0	\$499,975.00	0	0	0					

Project Plan and Schedule

Project Schedule												
Project Start: May 2014		Completed Work										
Projected End: May 2016		Active Task (in progress work)										
		Milestone/Deliverable (Originally Planned) use for missed milestones										
		Milestone/Deliverable (Actual) use when met on time										
		FY2014			FY2015			FY2016				
Task	Q1 (May-July)	Q2 (Aug-Oct)	Q3 (Nov-Jan)	Q4 (Feb-Apr)	Q1 (May-Jul)	Q2 (Aug-Oct)	Q3 (Nov-Jan)	Q4 (Feb-Apr)	Q1 (May-Jul)	Q1 (May-Jul)	Q2 (Aug-Oct)	Q3 (Nov-Jan)
Past Work												
Q1 Product Design												
Q2 Bottom mount TE heat pump design												
Q2 Packaging of Sheetak's Power TE Heat Pumps												
Q4Multi-module heat pump hardware												
Current/Future Work												
Q5 Preliminary reliability assesment												
Q6 Water heater product prototype assembly							\bullet					
Q7 Test to water heater standard												

