Combustion Safety Simplified Test Procedure

2016 Building Technologies Office Peer Review

Larry Brand, larry.brand@gastechnology.org Gas Technology Institute

Project Summary

Timeline:

Start date: 6/15/2013

Planned end date: Completed 9/30/2015

Key Milestones

- 1. Test Plan; 11/1/2013
- 2. Field Data Collection Complete; 9/1/2015

Budget:

Total Project \$ to Date:

- DOE: \$375,775
- Cost Share: \$94,000

Total Project \$:

- DOE: \$375,775
- Cost Share: \$94,000

Key Partners:

University of Illinois	Midwest Energy Efficiency Alliance
Center for Energy and the Environment	Utilization Technology Development
Seventhwave	National Associations of State Community Service Providers
NorthernSTAR	

Project Outcome:

Develop a simplified combustion safety test procedure that results in fewer false positives in order to increase the number of home energy upgrades.

Purpose and Objectives

Problem Statement: (MYPP: Residential Buildings Integration, Strategy 1, Building America, Combustion Appliance Zone Test.) This project addresses the challenge of upgrading existing homes where a "worst-case" depressurization test will cause a combustion safety failure in approximately 10% of the homes. Data suggests that failures under standard operating conditions are far fewer. Failure of the test may require costly remediation.

Target Market and Audience: Target market is 80 million existing single family homes. Target audience is home inspectors, state weatherization agencies, and the home improvement industry that need better tools and methods.

Impact of Project: A significant reduction in combustion safety false positives that stop home energy upgrades from proceeding.

Final products: the simplified test method transferred to the Building Performance Institute's ANSI/BPI-1200-S-2015 Standard Practice for Basic Analysis of Buildings. In the near, mid, and long-term the project contributes to the goal to reduce energy consumption in existing homes by 40% relative to the 2010 baseline by permitting more homes to be upgraded.

Approach

Approach: The approach to the project is to develop a simplified test procedure starting with the Building Performance Institute current practice and modifying the worst case conditions to those that are more predictive of persistent failure. The approach includes:

- Survey state weatherization teams to collect data on the actual frequency of field failures and the approach taken when a failure occurs.
- Perform a pilot study of the procedure in existing homes and collect longer-term data to determine if the procedure accurately predicts failure (frequent excessive spillage events).

Key Issues: Availability of homes that fail the test; difficult to find without testing many homes.

Distinctive Characteristics: First extensive field data collection project of its kind attempting to correlate a test failure with field data over time. First survey of state weatherization agencies attempting to quantify false positives.

	Test Procedure								
	Worst Case	BPI 2015	Simplified						
Dryer & Kitchen	On	On	On						
Next Largest Exhaust Fan	On	On	On						
Other Exhaust Fans	On	On	Off						
CAZ Door	Check	Check	Closed						
Other Doors	Check	Open= exhaust fan or return register in room	Open= exhaust fan or return register in room						
Air Handler	Check	Check	Check						

Check= which ever produces lowest CAZ pressure

Source: CEE

Survey

- How common are combustion safety failures?
- NASCSP Disseminated National Association for State Community Services Programs

- Asked questions about housing (last program year)
 - How many homes treated?
 - How many use fossil fuels?
 - How many have natural draft appliances in the pressure boundary?
- Asked about test procedure BPI, other?
- For those that failed:
 - How many due to air handler operation?
 - How many due to exhaust operation, including dryer?
 - How many had a new appliance installed to address the issue?
 - How many had a Power Vent kit installed to address the issue?
 - How many were deferred because of the issue?

Survey Results – Failure Rates

30,385 homes sampled

- States with data (4 states)
 - 4.3% (74 of 1,707 homes) got remediation due to EXPECTED failures
 - 5.4% (92 of 1,707 homes) got remediation due to OBSERVED spillage
- States with estimates (5 states)
 - 6% (~513 of 8,507 homes) got remediation due to EXPECTED failures
 - 16% (~1,351 of 8,507 homes) got remediation due to OBSERVED spillage
 - AK said 40-50%
 - Excluding AK, about 8%

Survey Results – Failure Causes

- States with data
 - 4% (73 of 1,707 homes) failed because of air handler operation
 - 4% (39 of 967 homes) failed due to exhausts (including dryers)
- States with estimates
 - 6.5% (~374 of 5,757 homes)
 failed because of air handler
 operation
 - 18% (~1,043 of 5,757 homes)
 failed due to exhausts
 (including dryers)

- > Combustion safety failures not as common as expected
- > Combustion safety failures not often due to exhaust fans alone
 - Leaky ducts, dryers, then exhaust fans. Vent system defects likely cause persistent events.
- > Some states volunteered that many/most failures due to:
 - Improper flue sizing
 - Crushed roof cap
 - Air handler operation
 - Dryer operation

Field Testing

- 11 homes in MN and WI; 1500 days of data
- Field testing
 - Simplified test procedure
 - Fixed door positions
 - Air handler on if it reduces indoor pressure
 - Clothes dryer on
 - Sites selected based on
 - Must fail criteria Kitchen fan on high; next largest fan on; continuous spillage after set time
 - Must pass criteria Kitchen fan on high or low; next largest fan on or off; no spillage after set time
- Test for spillage beyond
 - 2 minutes for water heaters and furnaces in heating mode
 - 5 minutes for furnaces not in heating mode
- Check CO against ANSI certification standards

ys	or data			
		Minimum	Maximum	Average
	Air Leakage (ACH50)	3.9	11.1	6.2
	Kitchen Fan (cfm), [10/11]	121	276	219
	Bathroom Fan (cfm), [11/11]	30	130	65
	2nd Bath Fan (cfm), [7/11]	20	72	41
	CAZ Depress (Pa)	-1.9	-13.7	-6.9

Monitoring setup - CO2 near vent used to identify spillage

Spillage by minute of operation, by site

Two sites showed excessive spilling - had venting defects

• MN_04 had an undersized water heater vent (vent capacity = 75% of burner input)

 WI_01 had a large opening downstream of the water heater (unused, partially repaired connection for a furnace)

3" vent, 6' run, 4 elbows

Water heater and unused furnace vent

Images courtesy CEE

Conclusions/Accomplishments

- Weatherization survey data indicates frequency of failure from the existing procedure near the expected 10% value.
 - Approximately half of the failures are related to air handler operation and half are related to exhaust appliances.
- Minnesota field data indicates close correlation between homes with persistent events and vent systems that were not installed to code.
 - Simplified test procedure easier to implement but still fails many houses that don't have persistent events.
- Typical systems as monitored don't spill excessively

Vent defects are an important cause, perhaps the largest cause, of excessive spillage. Vent inspection is critically important in evaluating safe operation.

Accomplishments: See prior slide.

Market Impact: Informed ANSI/BPI-1200-S-2015 Standard Practice for Basic Analysis of Buildings. Used in the training materials for BPI certified professionals, specified by over 110 weatherization and utility programs nationwide.

Awards/Recognition: Recognition by BPI for assistance in upgrading the worstcase depressurization test to the simplified procedure.

Lessons Learned: Field test houses with acceptance criteria that are too narrow are difficult to find. Homeowners are wary of safety-related testing. Clear failures must be flagged for remediation.

Project Integration and Collaboration

Project Integration: BPI was brought into the discussion of the simplified test procedure early and was open to replacing the worst-case approach that was a barrier to upgrading houses. Team members participated in the BPI-1200 Combustion Safety Task Group.

Partners, Subcontractors, and Collaborators: Partners: University of Illinois, Midwest Energy Efficiency Alliance (PARR team members). NorthernSTAR team members: University of Minnesota, Minnesota Center for Energy and Environment, Seventhwave. BPI was also a partner. The National Association of State Community Services Programs (NASCSP) that oversees state Weatherization Assistance Programs, LBNL, NREL.

Communications: Building America Webinar (12/16/15), ASHRAE 2016 Winter Conference (1/25/16), Duluth Energy Design Conference (2/22/16), Seventhwave Better Buildings Better Business Conference (3/4/16).

Next Steps and Future Plans:

This project is complete. Additional data would be valuable to verify the result in a broader array of houses:

- 1. Additional archetypes
- 2. Construction practices
- 3. Geographic diversity
- 4. Climate diversity

REFERENCE SLIDES

Project Budget: \$375,775 over 2 budget years
Variances: Additional funds were added in 2014/2015 to expand the number of houses in the study.
Cost to Date: 100% of the project budget was spent
Additional Funding: \$94,000 in cost share from Utilization Technology
Development, a consortium of natural gas utilities

Budget History								
6/15/13– FY 2015 (past)		FY 2 (curr	.016 rent)	FY 2017 – End (planned)				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
\$375,775	\$94,000	\$0	\$0	\$0	\$0			

Project Plan and Schedule

- See below for schedule and milestones
- No slipped milestones or slips in schedule additional funds added in FY15 to increase the quantity of field data collected
- Project complete no planned future work

Project Schedule												
Project Start: 5/15/2013		Completed Work										
Projected End:9/30/2015		Active Task (in progress work)										
		Milestone/Deliverable (Originally Planned)										
		Milestone/Deliverable (Actual)										
		FY2013 FY2014 FY201						.015	5			
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work												
Test Plan		\mathbf{b}										
Draft Technical Report - Test Method												
Final Technical Report - Test Method												
Draft Technical Report - Pilot Study												
Final Technical Report - Pilot Study												