Multi-Criteria Decisional Analysis: Methodology & Case Studies

800

ERDC Engineer Research and Development Center

Igor Linkov & Matthew Bates

Risk and Decision Science Team Environmental Lab, Engineer Research & Development Center, US Army Corps of Engineers

Igor.Linkov@usace.army.mil Matthew.E.Bates@usace.army.mil http://el.erdc.usace.army.mil/riskdecision/index.html

Interagency Performance & Risk Assessment Community of Practice, 2/23/2016

US Army Corps of Engineers.

Outline

- Introduction
- Overview of MCDA Methods
- MCDA for Stakeholder Engagement
- Multi-Objective Optimization
- Geospatial MCDA

Engineer Research & Development Center US Army / US Army Corps of Engineers

2500 Employees

Over 1000 engineers and scientists, 28% PhDs; 43% MS degrees, \$1B annual budget

 \bigstar

Research Laboratories of the Corps of Engineers

Laboratories

Field Offices

BUILDING STRONG®

Risk & Decision Science Team (Boston, MA)

Geospatial Research Laboratory (Alexandria, VA)

Construction Engineering Research Laboratory (Champaign, IL)

Headquarters (Vicksburg, MS) Coastal & Hydraulics Laboratory Environmental Laboratory Geotechnical & Structures Laboratory Information Technology Laboratory

ERDC Research Business Areas

Civil Works/Water Resources

Environmental Quality/Installations

Military Engineering

Geospatial Research & Engineering

4

Risk and Decision Science Team

- Mission: to improve decision-making and stakeholder engagement through application and development of risk and decision science techniques.
- Execution: through risk assessment, technologysupported stakeholder engagement, decision modeling, portfolio optimization, life cycle assessment, and software development.
- Results: help clients to describe relevant risks, identify and compare risk management alternatives, develop consensus among disparate stakeholder groups, and provide repeatable and transparent processes for future decisions.

Risk and Decision Science Team

Capabilities

- Over 15 risk, decision and environmental scientists developing solutions that support decisions across a broad spectrum of military and civilian needs
- State-of-the-science models and tools for structuring and conducting risk assessment, stakeholder engagement, resource prioritization, planning, and other emerging issues relevant to USACE, DoD, and Nation

Current Programs

- Cutting edge R&D for DoD as well as for DHS, DHHS, EPA, CPSC and others
- Applying Decision-Analytic tools to evaluate alternatives, integrate stakeholder values in product development, and prioritize research for a variety of technologies & industries.

Connecting Information and Decision is our goal

Integrating Risk Analysis, Life Cycle Assessment, and Multi-Criteria Decision Analysis models for the assessment of emerging materials & risks

ERDC Risk and Decision Science Team: Project Types

- Alternative Prioritization
- Project Portfolio Assessments
- Decision Support
- Resource Allocation
- Stakeholder Engagement with Technology Support
- Scenario Analysis
- Adaptive Management
- Value of Information

ERDC

Evolving Decision-Making Processes

An Integration Approach

Top-Down

Decision Analysis

Goal Identification and Problem Framing

What are the goals, alternatives, and constraints?

Decision Model

What are the criteria and metrics, How do we measure decision-maker values

Metrics Generation and Alternative Scoring

How does each alternative score along our identified criteria and metrics?

We Integrate Across Traditional Top-Down and Bottom-Up Approaches

Management

Modeling

Data Collection

Bottom-Up Risks Assessment

Risk Characterization

What are the risks relative to a threshold? How do they compare to other alternatives?

Physical/Statistical Model

What is the hazard? What is exposure?

Data Collection

What are fundamental properties/mechanisms associated with each alternative?

Linkov et al., 2014

BUILDING STRONG_®

Challenge: Emergence Risks & Delays in Generated Risk Data

Innovative solutions for a safer, better world

Bfrom Linkov and Satterstrom, 2008

Challenge: Need for Real Time Decisions

After Roman, 1996

Challenge: Avoiding Data Overload

- Does current data availability lead to data overload?
- Better to have ways to quantitatively integrate information.
- DA tools can synthesize available information to aid decisions while still preserving the underlying data attributes & uncertainty.

What is Decision Analysis? Why Do We Use It?

ERDC

BUILDING STRONG_®

Decision Analysis

- Provides frameworks for comparing data for alternatives across dissimilar criteria.
- Facilitates making relative tradeoffs between criteria of different importance.
- Normalizes data w/r/t context of decision at hand.
- Aggregates across criteria to prioritize alternatives.

ERDC

Summary of MCDA Benefits

- Some benefits of implementing formal decision analysis:
 - Transparent always clear how and why each item is scored.
 - Replicable anybody will receive the same answer.
 - Generalizable methods are easily ported between contexts.
 - Robust there is a science behind this that we can leverage.
 - Tractable break large problems down to focus on like parts.
 - Scalable decision framework can be applied to large data.
 - Quantitative easier to justify outcomes to 'higher-ups'.
 - Helps you identify the <u>full set of objectives</u> for the analysis.
 - Allows <u>exploration of trade-offs</u> between these objectives.
 - Separates subjective (weights) from <u>objective</u> (scores) data.
 - Can integrate values across a group with diverse views.
 - ► Enables scenario & sensitivity analyses.

Typical Decision Making Challenges

- "Humans are quite bad at making complex, unaided decisions" (Slovic et al., 1977).
- A variety of psychological biases tend to skew our rationality.
- We can only keep a few factors in 'working memory' at a time, so are liable to miss considerations without decision aids.
- Individuals respond to complex challenges by using intuition and/or personal experience to find the easiest solution.
- Groups can devolve into entrenched positions resistant to compromise
- "There is a temptation to think that honesty and common sense will suffice" (USACE IWR-Drought Study p.vi)

BUILDING STRONG®

ERDC

Decision Making Involves Tradeoffs

- There are often more considerations than just money
 - ► Health
 - Environment
- Explicit tradeoffs
 - Spending \$100K on Construction vs Monitoring in a restoration
 - More of one means less of the other
- Implicit tradeoffs
 - "Keeping local stakeholders happy" vs "Keeping HQ happy"
 - Terms of trade are not following physical laws
- Value tradeoffs
 - 100 acres of woodland vs 100 acres of wetland
 - Choice may depend on what each person "values"
- Good trade-off analysis turns "implicit" things into "explicit" things

Approaches to Evaluation

Subjective Prioritization ("Gut Feeling")

- Pros: easy to do
- Cons: no rigor, potential mistakes, poor transparency/reliability, susceptible to gaming, suboptimal (potentially inefficient and/or ineffective)
- Ad hoc weighting using Excel Spreadsheets
 - Pros: everybody can use Excel, relative ease of implementing
 - Cons: requires arbitrary weighting for multiple criteria, ad hoc metrics, etc.
- <u>Multi-Criteria Decision Analysis</u>
 - Pros: transparent, state-of-the-art methods, can be tailored/modified in real time, records and visualizes differences among commands and individual opinions

Cons: time and resource intensive, potentially costly, expertise required

Multi-Criteria Decision Analysis

- MCDA:
 - Evolved as a response to the observed inability of people to effectively analyze multiple streams of dissimilar information
 - Has many different technical approaches based on similar theoretical foundations
- MCDA integrates various <u>technical inputs</u> & evaluations with stakeholder & decision maker preferences/values.
- MCDA allows you to ask the <u>right people for right info</u>.
- MCDA methods <u>show why</u> a particular alternative is most valued.
- MCDA allows you to explore impact of scenario/data uncertainty and value of reducing it.

Example Decision Matrix

How to combine these criteria? (weights)

BUILDING STRONG_®

Decision Analysis and Decision Tools

Essential Decision Ingredients

People:

Policy Decision Maker(s)

Scientists and Engineers

Stakeholders (Public, Business, Interest groups)

Tools:

Environmental Assessment/Modeling (Hydro/Risk/Ecological/Environmental Assessment & Simulation models, etc.)

Decision Analysis (Group Decision Making Techniques/Decision Methodologies & Software)

(1) Identify objectives

Purchase a safe and reasonably priced vehicle.

(4) Develop value f(x)

(7) Score alternatives

Alt 1	Alt2	Alt3	Alt4	Alt5
0.136	0	0.114	0.076	0.25
0.023	0.048	0.05	0.033	0
0.05	0.028	0	0.042	0.028
0.038	0	0.15	0.015	0.053
0.03	0.15	0.12	0.09	0
0.05	0.05	0.025	0.025	0
0	0.1	0.1	0.3	0
	0.136 0.023 0.05 0.038 0.03 0.05	0.136 0 0.023 0.048 0.05 0.028 0.038 0 0.03 0.15 0.05 0.05	0.136 0 0.114 0.023 0.048 0.05 0.05 0.028 0 0.038 0 0.15 0.03 0.15 0.12 0.05 0.05 0.025	0.136 0 0.114 0.076 0.023 0.048 0.05 0.033 0.05 0.028 0 0.042 0.038 0 0.15 0.015 0.03 0.15 0.12 0.09 0.05 0.05 0.025 0.025

MCDA Process

(2) Identify criteria

Cost Resale Value Repair Cost Fuel Efficiency Passenger Space Style and Comfort Safety

(5) Elicit weights

(8) Calculate MCDA

(3) Identify metrics

Cost :	\$K
Res <mark>ale</mark> Value:	\$K in 3yrs
Repair Cost	\$/yr per10yrs
Fuel Efficiency:	EPA mpg est
Passenger Space :	# seats
Style and Comfort:	1-5 rating
Safety:	NHTSA rating

(6) Generate alternatives

Honda BMW Audi Volvo Toyota

 $w_m = 1$

(9) Analyze sensitivity

- Evaluate score and weight parameters that most influence our preferences for alternative x over y.
- Vary scores/weights within a plausible range (e.g., +/- 10%).

Specifying Decision Criteria & Performance Measures

- A coherent set of criteria set is (Roy, 1985):
 - Exhaustive (nothing important left out)
 - Consistent (no secret preferences)
 - Non-redundant (no double counting)
- Effective criteria are (Yoe, 2002):
 - Directional (maximum, minimum or optimum)
 - Concise (smallest number of measures)
 - Complete (no significant impact left out)
 - Clear (understandable to others)
- Criteria are often somewhat correlated but may still be useful

BUILDING STRONG®

Criteria should be tested throughout the decision process

MCDA Use in Environmental Science

MCDA for Stakeholder Engagement

BUILDING STRONG®

ERDC

Context

 Formalized risk communication discourse can be accomplished through inclusion of stakeholders in a decision analytical process

Work together to identify a course of action

 Important to consider how stakeholder groups can be included & considered in the process

BUILDING STRONG®

FRDC

Using Decision Analysis to Structure Stakeholder Engagement

- Decision Analysis can help improve stakeholder engagement.
- Shifts the problem from fighting over outcomes to discussions of priorities.
- Helps make progress after roadblocks have been reached.
- We have applied this approach and always get good feedback from the organizations we work for and with.

28

Recent case studies: Multiple USACE districts, BOEM, NOAA

Lessons learned about stakeholder involvement using DA

- Know your stakeholders.
- Design a process that is transparent and fair.
- Respect and appreciate different points of view.
- Ensure frequent and open communication and a variety of knowledge input.
- Be clear about how decisions will be made and the type of influence stakeholders can have on the decision.
- Minimalist inclusion exercises can may help to establish buy-in and prototype MORE inclusive exercises.

MCDA

Risk Assessment

Economic

ssessment

Life-Cvcle

sessment

Degree of Stakeholder Inclusion

Synthetic Stakeholders

Nanotechnology manufacturing example

Limited Interviews

NY/NJ Harbor example

Sustained & Active Participation

Long Island Sound

ERDC

Alternative/ Criterion	Energy consumption (GWh/kg)	Material efficiency (% in mass)	LCIA Score (EcoPoints)	Cost (\$/g)	Health risks			
GOAL	Minimize	Maximize	Minimize	Minimize	Minimize			
HiPco	0.05 0.21 0.36	0.00 0.23 0.45	1.48 20.69 39.90	242.50 1550.75 2859.00	40% 30% 20% 10% 0% L M H			
CVD	0.05 0.21 0.36	0.00 0.23 0.45	1.48 20.69 39.90	242.50 1550.75 2859.00	40% 30% 20% 10% 0% L M H			
Arc	0.05 0.21 0.36	0.00 0.23 0.45	1.48 20.69 39.90	242.50 1550.75 2859.00	40% 30% 20% 10% 0% L M H			
Laser	0.05 0.21 0.36	0.00 0.23 0.45	1.48 20.69 39.90	242.50 1550.75 2859.00	40% 30% 20% 10% 0% L M H			
BILLI DING STRONG 31 Innovative solutions for a safer better world								

Innovative solutions for a safer, better world

BUILDING STRONG®

 Use five stereotypical stakeholders to capture a range of viewpoints regarding criteria weights

Which manufacturing technology is best?

BUILDING STRONG®

Value of Information (VOI):

- Uncertainty in decision making comes from imprecise information about how each alternative will perform on each criterion
- VOI evaluates how different reductions in uncertainty may affect decision confidence and alternative rankings
- Aids in prioritizing investment in further research

- One alternative dominant across most alternatives.
- Some stakeholder perspectives would appreciate more info.

BUILDING STRONG®

34

Limited Interviews: NY/NJ Harbor Study

Site Issues

- Harbor among most polluted in U.S.
- >10⁶ cy fail regional criteria for ocean disposal

Study Objectives

- Integrate comparative risk assessment results with cost and stakeholder decision criteria
- Use decision criteria/performance measures from published data and proposed costs

Limited Interviews: NY/NJ Harbor Study

Goal

Criteria

Sub-Criteria

Alternatives

Preference Weights -Stakeholders

3

BUILDING STRONG_®

Alternative Performance Scores - Experts

ERDC

Innovative solutions for a safer, better world

36

Limited Interviews: NY/NJ Harbor Study

Cos		Public Acceptability	Ecological Risk		Human Health Risk			
DM Alternatives	(\$/CY)	Impacted Area/Capacity (acres / MCY)	Ecological Exposure Pathways	Magnitude of Ecological HQ	Human Exposure Pathways	Magnitude of Maximum Cancer Risk	Estimated Fish COC / Risk Level	
CAD	5-29	4400	23	680	18	2.8 E -5	28	
Island CDF	25- 35	980	38	2100	24	9.2 E -5	92	
Near-shore CDF	15- 25	6500	38	900	24	3.8 E -5	38	
Upland CDF	20- 25	6500	38	900	24	3.8 E -5	38	
Landfill	29- 70	0	0	0	21	3.2 E –4	0	
No Action	0-5	0	41	5200	12	2.2 E –4	220	
Cement-Lock	54- 75	0	14	0.00002	25	2.0 E -5	0	
Manufactured Soil	54- 60	750	18	8.7	22	1.0 E –3	0	

Blue Text: Most Acceptable Value Red Text: Least Acceptable Value

Limited Interviews: NY/NJ Harbor Study

Weights	EPA	USACE
Public Acceptability	7.4	12.5
Ecological Health	<mark>35.6</mark>	27.1
Human Health	47.0	40.7
Cost	10.0	19.7
		ER

Limited Interviews: NY/NJ Harbor Study

USACE weighting

Cost

Maximum Cancer Probability (Non-Barge Worker
 Ecological Hazard Quotient
 Est. COC Conc in Fish / Risk-based Conc
 Complete Human Health Exposure Pathways
 Complete Ecological Exposure Pathways
 Ratio of Impacted Area to Facility Capacity

EPA weighting

Cost

Maximum Cancer Probability (Non-Barge Worker Ecological Hazard Quotient Est. COC Conc in Fish / Risk-based Conc

- Complete Human Health Exposure Pathways
- Complete Ecological Exposure Pathways
- Ratio of Impacted Area to Facility Capacity

38.5 million cubic vards of dredged material produced in 30 years **Majority of** combined needs from CT: New Haven ~8.7 million cy Bridgeport ~4.6 million cy New London ~2.5 million cy **Connecticut River** ~2.4 million cy Clinton/Westbrook ~2.4 million cy Norwalk ~2.2 million cy

ONG ISLAND SOUNA

BED MATERIAL MANAGEMENT PLAN WO

- DMMP requested by Governors of Connecticut and New York after the EPA designated changes to open water dredged-material disposal sites in LIS.
- Issue: Stakeholders disagree
 - States, Harbormasters, Marinas, Yacht Clubs, Boat Yards, Cargo Terminals, Power Plants, Military Facilities, State Piers, Ferry Terminals, Dredgers, etc.
- Result: \$15M and 3 yrs later states & stakeholder fights reach US congress and process told to start over...

- The process calls for Federal agencies to seek public input regarding development of the LIS DMMP.
- Earlier attempts at generating criteria focused on sitespecific screening constraints; did not comprehensively address stakeholder values.
- USACE hosted a series of Working Group meetings to identify evaluation criteria based on stakeholder concerns.

- Individual stakeholder organizations to "weight" the criteria and sub-criteria (which are defined by the metrics) to determine relative priorities and tradeoffs.
- District staff and other experts to perform technical assessments to "score" the placement sites for each region of Long Island Sound against these metrics.
- The stakeholder weights and technical scores can be combined in an MCDA model to rank the placement sites in each LIS region. Results will be reported as one component of the final LIS DMMP.

ERDC

Long Island Sound

BUILDING STRONG_®

Environmental Media
Aquatic
-Source/destination water & sediment
compatibility
-Water quality
-Sediment stability
Terrestrial
-Suitability for intended end use
-Material stability and potential for erosion
-Exposure and potential for transport
Air
-Short-term air quality (equipment &
transportation)
-Exposure and potential for transport
Human Welfare
Health
-Operational safety
-Navigation safety
-Exposure to contaminants
Social
-Implementability
-Beneficial use
-Recreation, education, & research
-Cultural and historical
-Aesthetics
-Other conflicting uses
-Affected populations
11 11

Ecological Receptors
Birds
-Short-term impacts or benefits to individual animals & habitats
-Long-term impacts or benefits to populations & habitats
-Other considerations
Fish
-Short-term impacts or benefits to individual animals & habitats
-Long-term impacts or benefits to populations & habitats
-Other considerations
Shellfish
-Short-term impacts or benefits to individual animals & habitats
-Long-term impacts or benefits to populations & habitats
-Other considerations
Benthic
-Short-term impacts or benefits to individual animals & habitats
-Long-term impacts or benefits to populations & habitats
-Other considerations
Mammals
-Short-term impacts or benefits to individual animals & habitats
-Long-term impacts or benefits to populations & habitats
-Other considerations
Plants
-Short-term impacts or benefits to individual animals & habitats
-Long-term impacts or benefits to populations & habitats
-Other considerations
Other
-Short-term impacts or benefits to individual animals & habitats
-Long-term impacts or benefits to populations & habitats
-Other considerations

Economics
Short Term
-Direct construction
-Cost sharing requirement
-Monitoring costs
-Market and infrastructure limitations
-Indirect & opportunity costs
Long Term
-Maintenance & management costs
-Monitoring costs
-Change to commercial & recreational fisheries
-Ecosystem services
-Hurricane-barrier & flood-protection benefits
-Development & improvement
-Capacity issues
-Indirect, cumulative, & opportunity costs

Orgs Completing Interview Process

NY Dept. of State **CT Harbor Management Association** Norwalk Harbor Management Commission Town of Guilford Harbor Mgmt. Association US Navy - Submarine Base New London New London Port Authority Housatonic Valley Association Long Island Sound Eastern Regional Council LIS Assembly CT Dept. of Transportation Connecticut Marine Trade Association Connecticut Maritime Coalition New Haven Port Authority NY Department of Environmental Conservation Bridgeport Port Authority & Harbor Master CT Dept. of Energy and Environmental Protection CT Surfriders Fairfield County Environmental Justice Network **US Coast Guard** Connecticut Fund for the Environment

ERDC

solutions for a safer, better world

BUILDING STRONG_®

BUILDING STRONG_®

Multi-Objective Optimization

BUILDING STRONG®

ERDC

Multi-Objective Optimization with D2M2

- Dynamic tool for building transportation opt. models
- Mixed Integer Linear Programming approach
- Flexible, unique model formulation in each case:
 - Min/Max weighted sum of some multi-objective value function
 - Subject to set of volume & user defined system constraints
 - Given fixed and variable costs/impacts/effects for links and source & sink nodes (piecewise linear by volume & distance)
- Exclude prior solutions to explore near-optimal space
- Implemented with UI in Java & model in LPSOLVE

D2M2 Screenshots

D2M2 Houston Ship Channel Model

---- Houston Ship Channel

- Optimize navigation channel network, historical sedimentation and dredging, and system of placement areas for the Houston Ship Channel.
- Criteria include: Cost, oil & gas leases, endangered species, and oyster beds.

HSC Shoaling Rates (Dredging Needs)

BUILDING STRONG®

Innovative solutions for a safer, better world

53

HSC Placemen Areas & Capacities

BUILDING STRONG®

Innovative solutions for a safer, better world

54

HSC D2M2 Evaluation Criteria

Innovative solutions for a safer, better world

BUILDING STRONG_®

HSC D2M2 Site Network

Innovative solutions for a safer, better world

BUILDING STRONG_®

56

HSC D2M2 Results

e <u>View Navigate</u>

	HS_03_BMP_3	HS_04_MPE_4	HS_05_ECB_5	HS_06_CBG_6	HS_07_GHB_7
ALEXANDER ISLAND ACEMENT AREA	0	0	1336836 2030 / 2033	0	0
ATKINSON IS ARSH CELL M10	0	0	0	0	0
ATKINSON IS MARSH CELL M7/M8/M9	0	0	0	0	0
CLINTON EAST LACEMENT AREA	0	0	0	0	1015320 2014 / 2033
CLINTON WEST LACEMENT AREA	0	0	0	0	0
FILTERBED LACEMENT AREA	0	0	0	0	0
GLENDALE		costs	and <i>ir</i>	npact	s are
LACEMENT AREA			orod o	aually	imno
	— C	onside			•
LACEMENT AREA	- C		routin	ig cos	ts 509
LACEMENT AREA HOUSE TRACT LACEMENT AREA LOST LAKE	- Co Op th	onside ptimal	routin e minii	ng cos mize c	ts 50% cost s
LACEMENT AREA HOUSE TRACT LACEMENT AREA LOST LAKE LACEMENT AREA MID BAY	- Co Op th a	onside ptimal nan the	routin e minii s a sig	ng cos mize c nifical	ts 50% cost so nt rela
LACEMENT AREA HOUSE TRACT LACEMENT AREA LOST LAKE LACEMENT AREA MID BAY LACEMENT AREA	Co O th a	onside ptimal nan the nd has	routin e minii s a sig saving	ng cos mize c nificai gs for o	ts 50% cost so nt rela
LACEMENT AREA HOUSE TRACT LACEMENT AREA LOST LAKE LACEMENT AREA MID BAY LACEMENT AREA PA 14		onside ptimal nan the nd has npact	routin e minii s a sig saving	ng cos mize c nificai gs for o	ts 50% cost so nt rela
LACEMENT AREA HOUSE TRACT LACEMENT AREA LOST LAKE LACEMENT AREA MID BAY LACEMENT AREA PA 14 PA 15 PA 15 - PA 14 CONNECTION	957 2014 0	onside ptimal nan the nd has npact	routin e minii s a sig saving	ng cos mize c nificai gs for o	ts 50% cost so nt rela

🤍 🔍 75% 🔻

Comparing cost and impact results from two D2M2 scenarios

BUILDING STRONG_®

HSC D2M2 Results

ĬĦ

SWG RSM Houston Ship Channel Placement Area Optimization Viewer This viewer displays the output of the various tools created by ERDC to manage dredged material placement.

Help

HSC D2M2 Results

H-H

SWG RSM Houston Ship Channel Placement Area Optimization Viewer This viewer displays the output of the various tools created by ERDC to manage dredged material placement.

Help

BUILDING STRONG®

Geospatial MCDA

BUILDING STRONG®

ERDC

GEAR Summary

- GEAR—"Geo-centric Environment for Analysis & Reasoning"
- R&D prototype of spatial decision analysis software developed over multiple years with millions of dollars of US Government investment.
- GIS-based Multicriteria Decision Analysis (GIS-MCDA) gives users robust capability to efficiently and intuitively assess, analyze, and compare alternative outcomes to generate actionable end products.
- Enables the discovery, retrieval, organization, aggregation, analysis, and visualization of data from heterogeneous sources to transform open data to open analytics.
- Emphasizes a web-enabled software architecture capable of scaling to devices that support modern web browsers (e.g., desktops, tablets, mobile devices). Flexible and interoperable framework facilitates open, participatory, and collaborative analyses.

ERDC

Screenshot of GEAR Layout

Innovative solutions for a safer, better world

62

BUILDING STRONG®

Summary of Core Functionality

- <u>Decision Analysis</u>: GEAR's decision based capabilities allow users to manage and interpret data to answer higher order questions.
- <u>User friendly interface</u>: flexible, scalable, drag and drop capabilities.
- <u>Data sources</u>: GEAR ingests a wide range of data sources for spatial analysis, including uploaded GIS files and dynamic web services.
- <u>Value functions</u>: translate data measured in different units into normalized value scores, then aggregated to evaluate alternatives.
- <u>Analytical power & flexibility</u>: vector analysis of polygons, points, lines, or any combinations thereof; temporally enabled analyses.
- <u>Data modification</u>: edit, add, or remove data fields/entries using math and spatial operators (e.g., +, -, *, log, spatial join, extract value).
- <u>Potential applications</u>: many, including humanitarian assistance, disaster response, tactical operations planning, site suitability, environmental analysis, resilience & vulnerability analyses, etc.

Chicago Demo Summary

Scenario: Infectious disease outbreak in Chicago

Goal: Prioritize existing health centers for logistic and medical response

Assumptions: Ideal locations are central to vulnerable population, near major transportation, and far from other emergency services. Seven criteria used to measure the three objectives.

64

Step: Add data sources

ERDC

Innovative solutions for a safer, better world

BUILDING STRONG_®

Step: Inspect data sources and attributes in map, table and graph form

BUILDING STRONG®

Innovative solutions for a safer, better world

ERDC

ep: Choose decision alternatives	Edit Value Function ×
d add objectives and criteria	Name Maximize population in 1 mile rad
	Type Linear • •
	Data Source Health Centers +
Decision Analysis	Attribute SUM_NEWTOT •
Tip: Highlight the ^① icon to preview details for an item. Additionally, × You can click and drag an item in this list to move its position ×	From Value 1668
Alternatives: Health Centers	1 Flip Values
Add Objective Adjust Weights C Export C Export C Export	To Value 6355
Locate close to vulnerable population	C Generate Values from Attribute
Maximize population in 1 mile radius	1.0 0.5-
Maximize percentage of people under 5yrs and over 60yrs	
Locate near transportation infrastructure	The concel
Minimize distance to metra stations	Edit Value Function
Minimize distance to roads	Name Minimize distance to metra station Linear
Locate far from other emergency services	Type Proximity • • • • • Threshold UniqueValue • • • • • • • • • • • • • • • • • • •
Maximize distance to hospitals	Data Source Health Centers -
Maximize distance to police stations	To Data Source Metra_Stations
Maximize distance to fire stations	Minimum Distance 0 Meters
Analyzing Health Centers for Locate close to vulnerable population ,	Maximum Distance 3800 Meters
Locate near transportation infrastructure and Locate far from other emergency services	Higher Scores Closer
► Analyze •	
	0.0 0 1,000 2,000 3,000 4,000
	Cancel
Tw T	ERDO
	ERDL
	Innovative solutions for a safer, better wo

Step 6: Select Analyze button and visualize results in map and graph form

306.37.252.86:8080/gear/

ERDC

Innovative solutions for a safer, better world

BUILDING STRONG_®

Chemical Spill Demo Overview

Scenario: Local responders want to identify areas of need after Elk River, WV, chemical spill.
Goal: Evaluate different areas in Charleston, WV, based on anticipated risk & need.
Assumptions: Combine data for chemical spill risk (point data showing chemical concentrations sampled from hydrants) and vehicle access (polygons, representing greater inability to leave).

Chemical concentration

Vehicle access

Light colored grid zones have low vehicle access & high chemical concentrations: Higher priority for response.

Innovative solutions for a safer, better world

BUILDING STRONG®

Hydropower Demo Overview

Scenario: US Army wants to invest in hydropower development.
Goal: Screen good locations for new hydro near existing military installations.
Assumptions: Prioritize existing dams based on available hydropower potential and distance from installation (with a threshold based on a maximum of 50km).

Bangladesh Demo Summary

Scenario: Ebola outbreak in Dhaka, Bangladesh

Goal: Prioritize local schools for temporary medical triage facilities

Assumptions: Ideal locations are central to vulnerable population and population centers, near public transportation, and far from other emergency services. Six criteria used to measure the four main objectives.

Financial Risk Demo Overview

Scenario: US regulatory agency wants to evaluate financial risks with a geographic component **Goal**: Screen a large number of financial firms for risky behavior and visualize results. **Assumptions**: Identify firms based on their size, whether they have been flagged as suspicions, time since their last regulatory review, etc. (case study is real, data shown here is notional).

72

Conclusions

- Decision Analytic approaches represent the practical application of analytical tools to support complex decisions, allocation problems and planning processes.
- Benefits include transparency, flexibility, repeatability between decision makers, and responsiveness to multiple planning scenarios.
- Applications are diverse but all require decision maker / stakeholder consideration of multiple criteria/alternatives.
- This can 1) help with integration of methods in tools, and
 2) implement some 'default' decision models for cases.

ERDC

References

•Linkov, I., Seager, T.P. (2011). Coupling multi-criteria decision analysis, life-cycle assessment, and risk assessment for emerging threats. *Environmental Science and Technology* 45(12): 5068-5074.

• Linkov, I., Bates, M.E., Loney, D., Sparrevik, M., Bridges, T.S. (Oct 2011). Risk Management Practices—Cross-Agency Comparisons and Tolerable Risk, chapter in *Climate: Global Change and Local Adaptation*, NATO Science for Peace and Security Series, Amsterdam: Springer.

• Sparrevik, M., Barton, D. N., Bates, M., Linkov, I. (2012). Use of Stochastic Multi-Criteria Decision Analysis to Support Sustainable Management of Contaminated Sediments. *Environmental Science & Technology* 46(3):1326-1334.

• Linkov, I., Bridges, T.S. (2011). Climate: Global Change and Local Adaptation. Dordecht, The Netherlands: Springer.

• Keisler, J., Collier, Z., Chu, E., Sinatra, N., Linkov, I. (2013, submitted). Value of Information Analysis: State-of-the-Application. *Environment, Systems, Decisions*.

• Convertino, M., Foran, C.M., Keisler, J.M., Scarlett, L., LoSchiavo, A., Kiker, G.A., Linkov, I. (2013, submitted). Enhanced Adaptive Management for Everglades in Response to Climate Change. *Nature Climate Change*

• Linkov, I., Bates, M.E., Canis, L.J., Seager, T.P., Keisler J.M. (2011). A Decision-Directed Approach for Prioritizing Research into the Impact of Nanomaterials on the Environment and Human Health. *Nature Nanotechnology* 6:784–787.

• Park, J., Seager, TP, Rao, PCS, Convertino, M., Linkov, I. (2012). Contrasting risk and resilience approaches to catastrophe management in engineering systems. *Risk Analysis*

• Linkov, I, Rosoff, H., Valverde, J.L., Bates, M., Trump, B., Friedman, D., Evans, J., and Keisler, J. (2012). Civilian Response Corps Force Review: The Application of Multi-Criteria Decision Analysis to Prioritize Skills Required for Future Diplomatic Missions. *Journal of Multi-criteria Decision Analysis*.

• Linkov, I., Cormier, S., Gold, J., Satterstrom, F.K., Bridges, T. (2012). Using Our Brains to Develop Better Environmental Policy. *Risk Analysis* 32: 374–380.

• Linkov, I., Welle, P., Loney, D., Tkachuk, A., Canis, L., Kim, J., Bridges, T. (2011). The use of Multi-Criteria Decision Analysis Methods to Support Weight of Evidence Evaluation in Risk Assessment. *Risk Analysis* 31:1211-1225.

• Sparrevik, Linkov, I, et al. (2011). Use of Life Cycle Assessments to Evaluate the Environmental Footprint of Contaminated Sediment Remediation. *Environmental Science and Technology* 45: 4235–4241

• Hamilton, M.C., J.H. Lambert, J.W. Keisler, I. Linkov, and F.M. Holcomb (2013, submitted). Research and development priorities for energy security of military and industrial installations. *ASCE Journal of Infrastructure Systems*.

Backup Slides: Additional Project Snapshots

ERDC

BUILDING STRONG_®

Horseshoe Bend Project

Diverse Stakeholders

- Flood control
- Environmental
- Tribal interests

10

- Commercial
- Recreation

	The second second	Criteria	Ranking (1 - 8) Score (0 - 100)
1 13		Levee Safety / Reliabil	ity 1	100
		Fish / Salmon Health	2	85
		Cost	3	60
		Implementability	4	55
		Flood Risk Manageme	nt 5	40
		Community Resilience	5	40
		Tribal and Public Use	7	22
		Water Quality	8	5
Project Kickoff II Time (months)	Criteria Workshop	Solutions Workshop	Results Workshop	Finalize Report
·	Develop Value Heirarchy	Refine & Evaluate Alternatives		Review Report

Weights

NY/NJ Harbor – Multiple Types of Sediment Contamination

Combined map of sediment texture and contamination

Innovative solutions for a safer, better world

BUILDING STRONG®

New Haven Harbor Weight of Evidence Assessment

Morris Cove

The support given by various LOEs for site suitability must be interpreted in the context of known metadata about the data source, e.g., its relevance, quality, and resolution.

Cost

Bioassay

Historical Management

Sediment Type

Socio-Political Concerns

Material Placement

Dw

Open Water Placement?

Morris Cove?

Leetes Island?

Manchester Landfill?

Criteria	Relevance	Quality	Resolution	LOE Support
Cost	HIGH:	HIGH:	MED:	MED:
	Budget constraints were	Extensive holistic	3 significant	\$10.8M= 125%
	required to be met	cost analysis	figures used	increase
Hist.	MED-LOW:	N/A	N/A	MED:
Management	Historic use is not a required nor limiting factor but is informative			Not previously used
Environmental	HIGH:	MED:	N/A	HIGH:
Effects	Federal regulations were	Fairly vague		Supporting
	required to be met for all	descriptions of		Essential Fish
	project aspects	environmental		Habitat
		surveys for total		Lower emissions
		impact were taken		
Bioassay	HIGH:	HIGH:	MED-LOW:	MED:
	Contaminants could destroy	3 different in vivo	Sample size of 6	Low levels of
	essential habitat	tests		PCBs and DDTs
				detected
Sediment Type	HIGH:	MED:	HIGH:	HIGH:
	Incompatible sediment could	Vibracore	Sample size of	Compatible
	destroy essential habitat	considered 2 nd tier	19	
Site	HIGH:	MED:	N/A	MED:
Availability	Key requirement for placement	Recent surveys		Will accept only
·		conducted for site		75% of total
		availability		material
Socio-Political	MED-HIGH:	MED-LOW:	N/A	MED:
	Public unrest could make an	Speculation, no		 No new
	alternative less feasible	known specific		infrastructure
		polling		 Longer project
				timeline

Innovative solutions for a safer, better world

78

Portfolio Approach for Cruise Time Allocation

Approach

- New methodology for selecting appropriate portfolios of cruises given the value they deliver, both technically and to the agency and stakeholders
- •Technical and non-technical criteria were developed, and the FY13 white boat cruises were scored as a proof-of-concept
- •Results presented to the Vessel Coordinators and Science Board
- Science board to determine the scope, complexity and data sources for forward-looking analyses

Key Participants

•Sponsor: NOAA NMFS

Purpose/Objectives

- The approach can ensure the portfolios of cruises selected meets the NOAA NMFS's goals for its science portfolio.
- Documenting the value of each cruise, whether completed or not completed, allows the agency to argue for increased resources.
- Portfolio decision model is designed to make transparent the current criteria being used in NMFS decisions NOT replace them.

Results

- •Initial proof-of-concept using FY13 White Boat Cruises
- •Presented to Vessel Coordinators(May 2014)
- •Presented to Science Advisory Board (June 2014)
- •White paper for NOAA NMFS Science Board (June 2014)

Resilience Assessment: Jamaica Bay Case Study

Approach

- Use a matrix approach to defining the assessment space for resilience: capacity across the physical-information-cognitive-social domains in the prepare-absorb-recover-adapt stages
- For Jamaica Bay case study, use narrative reports and community/stakeholder interviews to define critical functions of the system and identify relevant metrics for each capacity cell.
- MCDA methodologies can be used to aggregate data into a final score of resilience that provides a baseline to evaluate project proposals against.

Key Participants •Sponsor: CERB

Purpose/Objectives

- Existing risk management strategy is not sufficient to ensure coastal community safety in the face of climate change and uncertain future events.
- Assessments of coastal community resilience that incorporate the physical, social and information aspects of a community in both the preparation and the recovery from events help responsible agencies, such as USACE, to evaluate the efficacy of proposed projects and identify points of reduce impact without support in other community sectors.

• The goal of the project is to provide a quantitative assessment of resilience that can be incorporated into planning models

Results

• Primary efforts by government agencies occur in the physical and information domain during the prepare stage and in the physical domain of the recovery stage, efforts dictated largely by funding availability and public visibility.

• Continued efforts to improve reliability and robustness of physical structures may result in diminishing returns in the absence of additional efforts to develop capacities in the cognitive (organizational decision structures) and social domains and in the adaptation phase.

•This assessment is not complete; the matrix shown is hypothetical.

Humanitarian Assistance Project Site Suitability

Approach

- Integrates data across competing objectives via value functions and importance weights.
- Evaluates HADR projects based on local hazard exposure, community resilience, investment sustainability, & agency mission specific criteria.
- Can optimize a portfolio of potential projects based on costs & operational/programmatic constraints.
- Will be integrated into the Pacific Disaster Center's DisasterAWARE web platform, which is already used heavily by SOUTHCOM and others.

Key Participants

- •Sponsor: ERDC TEC, Office of Naval Reseach
- •Gov't Contributors: ERDC TEC & EL, AGC, Pacific Disaster Center
- •Gov't Proponents: Ike Clark & Steve Carro (SOUTHCOM J45), Kevin Stanley (SOUTHCOM J7), LTC Travis Lindberg (USACE LNO to SOUTHCOM), Tiger Hession (PACOM J45)

Purpose/Objectives

- DOD Humanitarian Assistance and Disaster Response (HADR) managers often face the complex task of prioritizing limited funds for investment across broad regions of varying need.
- The SHAPE project presents a framework for HADR project evaluations & site suitability analysis based on spatial and other data via Multi-Criteria Decision Analysis (MCDA)
- Provides a transparent, flexible, repeatable, data-driven and justifiable, analytical approach for evaluating projects.

<u>Results</u>

- Case study demonstrating approach with risk and vulnerability site screening data from El Salvador.
- Presented to SOUTHCOM and other COCOM HADR managers.
 In person meeting with SOUTCOM HADR community, where ideas were well received.
- Approach presented at Humanitarian Technology: Science, Systems and Global Impact 2014 conference & printed in conf proceedings.
- Additional journal article in preparation.
- Integration with PDC DisasterAWARE tool planned for FY15.

Value of Information Approach to Prioritize Nanomaterial Research

Combined Life-Cycle Assessment and MCDA for Treated Lumber Selection

Approach

- Develop inventories of life-cycle impacts associated with production of six treated lumber products.
- Compare the environmental and human health impacts (global warming, acidification, ecotoxicity, etc.) between the six alternatives using LCA analysis and tools.
- Use decision analysis methods to assign relative values to the LCA risks as well as the benefits (low cost, durability, and corrosiveness) of each treatment alternative.
- •Use preferences for each of neutral, environmental and military decision makers to identify the preferred treatment alternative for each type of stakeholder

Key Participants

- Sponsor (s): USACE
- •Gov't Contributors:

Purpose/Objectives

- The DOD ships munitions around the world on treated wood pallets. Treatment should ensure that materials are stable in harsh environments and do not degrade munitions, but are also cost effective.
- The DOD currently uses zinc naphthenate (ZN) as a lumber treatment due to its durability but ZN is no longer a registered product with EPA and the DOD must find a suitable replacement.
- The goal of the LCA is to identify environmental and health impacts associated the production of each lumber treatment
- The goal of the MCDA is to weigh the environmental impacts with the performance results and costs to identify preferred lumber alternatives.

Results

- All three stakeholders determined CQ to be the least favorable alterative.
- Military stakeholder determined ZN to be the most favorable alternative; environmental stakeholder found MCQ (Micronized Copper Quaternary) to be preferred. ZN is no longer an acceptable option but the decision matrix shows that MCQ is a nearly equally favorable alternative for military and could be an effective substitute.
- While the MCQ was ranked second for the military stakeholder, the converse was not true for the environmental ranking, where ACQ (Alkaline Copper Quaternary) was the second most favorable alternative.
- In summary, a specific ranking of alternative in terms of preference across all risk and benefit criteria can be determined for any stakeholder. In addition, treatment alternatives ranked highly across all stakeholder can be used to find a globally acceptable alternative.