Multi-Criteria Decisional Analysis: Methodology & Case Studies

Igor Linkov & Matthew Bates
Risk and Decision Science Team
Environmental Lab, Engineer Research & Development Center, US Army Corps of Engineers

Igor.Linkov@usace.army.mil
Matthew.E.Bates@usace.army.mil
http://el.erdc.usace.army.mil/riskdecision/index.html

Interagency Performance & Risk Assessment Community of Practice, 2/23/2016
Outline

- Introduction
- Overview of MCDA Methods
- MCDA for Stakeholder Engagement
- Multi-Objective Optimization
- Geospatial MCDA
Innovative solutions for a safer, better world

BUILDING STRONG®

Headquarters (Vicksburg, MS)
Coastal & Hydraulics Laboratory
Environmental Laboratory
Geotechnical & Structures Laboratory
Information Technology Laboratory

Construction Engineering Research Laboratory (Champaign, IL)

Geospatial Research Laboratory (Alexandria, VA)

Cold Regions Research Engineering Laboratory (Hanover, NH)

Risk & Decision Science Team (Boston, MA)

Research Laboratories of the Corps of Engineers

2500 Employees
Over 1000 engineers and scientists, 28% PhDs; 43% MS degrees, $1B annual budget

Over 1000 engineers and scientists, 28% PhDs; 43% MS degrees, $1B annual budget

Engineer Research & Development Center
US Army / US Army Corps of Engineers

3
ERDC Research Business Areas

Civil Works/Water Resources

Military Engineering

Environmental Quality/Installations

Geospatial Research & Engineering
Risk and Decision Science Team

- **Mission**: to improve decision-making and stakeholder engagement through application and development of risk and decision science techniques.

- **Execution**: through risk assessment, technology-supported stakeholder engagement, decision modeling, portfolio optimization, life cycle assessment, and software development.

- **Results**: help clients to describe relevant risks, identify and compare risk management alternatives, develop consensus among disparate stakeholder groups, and provide repeatable and transparent processes for future decisions.
Risk and Decision Science Team

Capabilities

- Over 15 risk, decision and environmental scientists developing solutions that support decisions across a broad spectrum of military and civilian needs
- State-of-the-science models and tools for structuring and conducting risk assessment, stakeholder engagement, resource prioritization, planning, and other emerging issues relevant to USACE, DoD, and Nation

Current Programs

- Cutting edge R&D for DoD as well as for DHS, DHHS, EPA, CPSC and others
- Applying Decision-Analytic tools to evaluate alternatives, integrate stakeholder values in product development, and prioritize research for a variety of technologies & industries.

Connecting Information and Decision is our goal

Integrating Risk Analysis, Life Cycle Assessment, and Multi-Criteria Decision Analysis models for the assessment of emerging materials & risks.
ERDC Risk and Decision Science Team: Project Types

- Alternative Prioritization
- Project Portfolio Assessments
- Decision Support
- Resource Allocation
- Stakeholder Engagement with Technology Support
- Scenario Analysis
- Adaptive Management
- Value of Information
Evolving Decision-Making Processes

AD HOC Process
- Include/Exclude?
- Detailed/Vague?
- Certain/Uncertain?
- Consensus/Fragmented?
 - Iterative?
 - Rigid/unstructured?

Tools:
- Risk Analysis
- Modeling / Monitoring
- Cost or Benefits
- Stakeholders' Opinion

Quantitative?
Qualitative?

Decision Analytic Framework
- Agency-relevant/Stakeholder-selected
 - Currently available software
 - Variety of structuring techniques
 - Iteration/reflection encouraged
 - Identify areas for discussion/compromise

Decision-Maker(s)

Challenge: Multiple & Uncertain Criteria

Transparent & Quantitative Integration
An Integration Approach

Top-Down Decision Analysis

Goal Identification and Problem Framing
- What are the goals, alternatives, and constraints?

Decision Model
- What are the criteria and metrics, How do we measure decision-maker values

Metrics Generation and Alternative Scoring
- How does each alternative score along our identified criteria and metrics?

Bottom-Up Risks Assessment

Management

Risk Characterization
- What are the risks relative to a threshold? How do they compare to other alternatives?

Modeling

Physical/Statistical Model
- What is the hazard?
- What is exposure?

Data Collection

Data Collection
- What are fundamental properties/mechanisms associated with each alternative?
Challenge: Emergence Risks & Delays in Generated Risk Data

Emerging risks

Generated risk data

Gap

Risk data analyzed & agencies are ready to act

Decision analytic tools can help fill these ever changing but ever present gaps.

from Linkov and Satterstrom, 2008

Innovative solutions for a safer, better world
Challenge: Need for Real Time Decisions

What Can Be Done to Help in Decision Making?

Increasing data availability should lead to quicker & better decisions.

Need for revolutionary changes: fusion of information and decisions reflecting stakeholder values.

After Roman, 1996
Challenge: Avoiding Data Overload

- Does current data availability lead to data overload?

- Better to have ways to quantitatively integrate information.

- DA tools can synthesize available information to aid decisions while still preserving the underlying data attributes & uncertainty.
What is Decision Analysis?
Why Do We Use It?
Decision Analysis

- Provides frameworks for comparing data for alternatives across dissimilar criteria.
- Facilitates making relative tradeoffs between criteria of different importance.
- Normalizes data w/r/t context of decision at hand.
- Aggregates across criteria to prioritize alternatives.
Some benefits of implementing formal decision analysis:

- **Transparent** – always clear how and why each item is scored.
- **Replicable** – anybody will receive the same answer.
- **Generalizable** – methods are easily ported between contexts.
- **Robust** – there is a science behind this that we can leverage.
- **Tractable** – break large problems down to focus on like parts.
- **Scalable** – decision framework can be applied to large data.
- **Quantitative** – easier to justify outcomes to ‘higher-ups’.
- Helps you identify the **full set of objectives** for the analysis.
- Allows **exploration of trade-offs** between these objectives.
- Separates **subjective** (weights) from **objective** (scores) data.
- Can **integrate values across a group** with diverse views.
- Enables **scenario & sensitivity analyses**.
Typical Decision Making Challenges

- “Humans are quite bad at making complex, unaided decisions” (Slovic et al., 1977).

- A variety of psychological biases tend to skew our rationality.

- We can only keep a few factors in ‘working memory’ at a time, so are liable to miss considerations without decision aids.

- Individuals respond to complex challenges by using intuition and/or personal experience to find the easiest solution.

- Groups can devolve into entrenched positions resistant to compromise

- “There is a temptation to think that honesty and common sense will suffice” (USACE IWR-Drought Study p.vi)
Decision Making Involves Tradeoffs

- There are often more considerations than just money
 - Health
 - Environment

- Explicit tradeoffs
 - Spending $100K on Construction vs Monitoring in a restoration
 - More of one means less of the other

- Implicit tradeoffs
 - “Keeping local stakeholders happy” vs “Keeping HQ happy”
 - Terms of trade are not following physical laws

- Value tradeoffs
 - 100 acres of woodland vs 100 acres of wetland
 - Choice may depend on what each person “values”

- Good trade-off analysis turns “implicit” things into “explicit” things
Approaches to Evaluation

- **Subjective Prioritization ("Gut Feeling")**
 - **Pros:** easy to do
 - **Cons:** no rigor, potential mistakes, poor transparency/reliability, susceptible to gaming, suboptimal (potentially inefficient and/or ineffective)

- **Ad hoc weighting using Excel Spreadsheets**
 - **Pros:** everybody can use Excel, relative ease of implementing
 - **Cons:** requires arbitrary weighting for multiple criteria, ad hoc metrics, etc.

- **Multi-Criteria Decision Analysis**
 - **Pros:** transparent, state-of-the-art methods, can be tailored/modified in real time, records and visualizes differences among commands and individual opinions
 - **Cons:** time and resource intensive, potentially costly, expertise required
Multi-Criteria Decision Analysis

• MCDA:
 – Evolved as a response to the observed inability of people to effectively analyze multiple streams of dissimilar information
 – Has many different technical approaches based on similar theoretical foundations

• MCDA integrates various technical inputs & evaluations with stakeholder & decision maker preferences/values.

• MCDA allows you to ask the right people for right info.

• MCDA methods show why a particular alternative is most valued.

• MCDA allows you to explore impact of scenario/data uncertainty and value of reducing it.

BUILDING STRONG®

Innovative solutions for a safer, better world
Example Decision Matrix

How to interpret these data/results? (normalized scores)

<table>
<thead>
<tr>
<th>Alt.</th>
<th>Criteria 1</th>
<th>Criteria 2</th>
<th>Criteria 3</th>
<th>Criteria 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monitoring Results</td>
<td>Stakeholder Preference</td>
<td>Economic Cost</td>
<td>Non-monetary benefit</td>
</tr>
<tr>
<td></td>
<td>Monitoring Results</td>
<td>Stakeholder Preference</td>
<td>Economic Cost</td>
<td>Non-monetary benefit</td>
</tr>
<tr>
<td></td>
<td>Monitoring Results</td>
<td>Stakeholder Preference</td>
<td>Economic Cost</td>
<td>Non-monetary benefit</td>
</tr>
</tbody>
</table>

How to combine these criteria? (weights)

- **Alt.**
- **Criteria 1**
- **Criteria 2**
- **Criteria 3**
- **Criteria 4**

How to compare these alternatives? (MCDA evaluations)

- **Alt.**
- **Monitoring Results**
- **Stakeholder Preference**
- **Economic Cost**
- **Non-monetary benefit**
Decision Analysis and Decision Tools

- Problems
- Alternatives
- Criteria
- Evaluation
- Decision Matrix
- Weights
- Synthesis
- Decision

Similar Between Decision Analysis Techniques

Multicriteria Decision Support Framework

Different Between Decision Analysis Techniques

After Yoe (2002)
Essential Decision Ingredients

People:
- Policy Decision Maker(s)
- Scientists and Engineers
- Stakeholders (Public, Business, Interest groups)

Process:
- Define Problem & Generate Alternatives
- Identify criteria to compare alternatives
- Gather value judgments on relative importance of the criteria
- Screen/eliminate clearly inferior alternatives
- Determine performance of alternatives for criteria
- Rank/Select final alternative(s)

Tools:
- Environmental Assessment/Modeling (Hydro/Risk/Ecological/Environmental Assessment & Simulation models, etc.)
- Decision Analysis (Group Decision Making Techniques/Decision Methodologies & Software)

Innovative solutions for a safer, better world
MCDA Process

(1) Identify objectives

Purchase a safe and reasonably priced vehicle.

(2) Identify criteria

Cost
Resale Value
Repair Cost
Fuel Efficiency
Passenger Space
Style and Comfort
Safety

(3) Identify metrics

Cost: $K
Resale Value: $K in 3yrs
Repair Cost: $/yr per 10yrs
Fuel Efficiency: EPA mpg est
Passenger Space: # seats
Style and Comfort: 1-5 rating
Safety: NHTSA rating

(4) Develop value f(x)

(5) Elicit weights

\[\sum_{m=1}^{M} w_m = 1 \]

Honda
BMW
Audi
Volvo
Toyota

(6) Generate alternatives

(7) Score alternatives

(8) Calculate MCDA

(9) Analyze sensitivity

- Evaluate score and weight parameters that most influence our preferences for alternative x over y.
- Vary scores/weights within a plausible range (e.g., +/- 10%).
Specifying Decision Criteria & Performance Measures

- A coherent set of criteria set is (Roy, 1985):
 - Exhaustive (nothing important left out)
 - Consistent (no secret preferences)
 - Non-redundant (no double counting)

- Effective criteria are (Yoe, 2002):
 - Directional (maximum, minimum or optimum)
 - Concise (smallest number of measures)
 - Complete (no significant impact left out)
 - Clear (understandable to others)

- Criteria are often somewhat correlated but may still be useful
- Criteria should be tested throughout the decision process
MCDA Use in Environmental Science

Graph showing the share (in %) of MCDA papers in the environmental literature from 1990 to 2015. The share has increased steadily over the years, as indicated by the upward trend in the data points. The graph is labeled "After Huang, Linkov 2011."
MCDA for Stakeholder Engagement
Context

- Formalized risk communication discourse can be accomplished through inclusion of stakeholders in a decision analytical process.

- Work together to identify a course of action.

- Important to consider how stakeholder groups can be included & considered in the process.
Using Decision Analysis to Structure Stakeholder Engagement

- Decision Analysis can help improve stakeholder engagement.
- Shifts the problem from fighting over outcomes to discussions of priorities.
- Helps make progress after roadblocks have been reached.
- We have applied this approach and always get good feedback from the organizations we work for and with.
 - Recent case studies: Multiple USACE districts, BOEM, NOAA
Lessons learned about stakeholder involvement using DA

- Know your stakeholders.
- Design a process that is transparent and fair.
- Respect and appreciate different points of view.
- Ensure frequent and open communication and a variety of knowledge input.
- Be clear about how decisions will be made and the type of influence stakeholders can have on the decision.
- Minimalist inclusion exercises can may help to establish buy-in and prototype MORE inclusive exercises.
Degree of Stakeholder Inclusion

- Synthetic Stakeholders
 - Nanotechnology manufacturing example

- Limited Interviews
 - NY/NJ Harbor example

- Sustained & Active Participation
 - Long Island Sound
Synthetic Stakeholders: Nano Case Study

<table>
<thead>
<tr>
<th>Alternative/Criterion</th>
<th>Energy consumption (GWh/kg)</th>
<th>Material efficiency (% in mass)</th>
<th>LCIA Score (EcoPoints)</th>
<th>Cost ($/g)</th>
<th>Health risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOAL</td>
<td>Minimize</td>
<td>Maximize</td>
<td>Minimize</td>
<td>Minimize</td>
<td>Minimize</td>
</tr>
<tr>
<td>HiPco</td>
<td>0.05 0.21 0.36</td>
<td>0.00 0.23 0.45</td>
<td>1.48 20.69 39.90</td>
<td>242.50 1550.75 2859.00</td>
<td>[Bar Graph] L M H</td>
</tr>
<tr>
<td>CVD</td>
<td>0.05 0.21 0.36</td>
<td>0.00 0.23 0.45</td>
<td>1.48 20.69 39.90</td>
<td>242.50 1550.75 2859.00</td>
<td>[Bar Graph] L M H</td>
</tr>
<tr>
<td>Arc</td>
<td>0.05 0.21 0.36</td>
<td>0.00 0.23 0.45</td>
<td>1.48 20.69 39.90</td>
<td>242.50 1550.75 2859.00</td>
<td>[Bar Graph] L M H</td>
</tr>
<tr>
<td>Laser</td>
<td>0.05 0.21 0.36</td>
<td>0.00 0.23 0.45</td>
<td>1.48 20.69 39.90</td>
<td>242.50 1550.75 2859.00</td>
<td>[Bar Graph] L M H</td>
</tr>
</tbody>
</table>

Innovative solutions for a safer, better world
Synthetic Stakeholders: Nano Case Study

- Use five stereotypical stakeholders to capture a range of viewpoints regarding criteria weights.

- Which manufacturing technology is best?
Synthetic Stakeholders: Nano Case Study

Value of Information (VOI):

- Uncertainty in decision making comes from imprecise information about how each alternative will perform on each criterion
- VOI evaluates how different reductions in uncertainty may affect decision confidence and alternative rankings
- Aids in prioritizing investment in further research
Synthetic Stakeholders: Nano Case Study

- One alternative dominant across most alternatives.
- Some stakeholder perspectives would appreciate more info.
Limited Interviews: NY/NJ Harbor Study

Site Issues
- Harbor among most polluted in U.S.
- $>10^6$ cy fail regional criteria for ocean disposal

Study Objectives
- Integrate comparative risk assessment results with cost and stakeholder decision criteria
- Use decision criteria/performance measures from published data and proposed costs
Limited Interviews: NY/NJ Harbor Study

<table>
<thead>
<tr>
<th>Goal</th>
<th>Criteria</th>
<th>Sub-Criteria</th>
<th>Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DM Management Decision

- Ecological Risk
- Human Health Risk
- Cost
- Public Acceptability

Sub-Criteria

- Ecological Hazard Quotient
- Complete Ecological Exposure Pathways
- Complete Human Health Exposure Pathways
- Maximum Cancer Probability (Non-Barge Worker)
- Est. COC Conc in Fish / Risk-based Conc
- Ratio of Impacted Area to Facility Capacity
- CAD
- Island CDF
- Near-Shore CDF
- Upland CDF
- Landfill
- No Action
- Cement Lock Technology
- Manufactured Soil Technology

Preference Weights - Stakeholders

Alternative Performance Scores - Experts

Innovative solutions for a safer, better world
Limited Interviews: NY/NJ Harbor Study

<table>
<thead>
<tr>
<th>DM Alternatives</th>
<th>Cost ($/CY)</th>
<th>Public Acceptability</th>
<th>Ecological Risk</th>
<th>Human Health Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Impacted Area/Capacity (acres / MCY)</td>
<td>Ecological Exposure Pathways</td>
<td>Magnitude of Ecological HQ</td>
</tr>
<tr>
<td>CAD</td>
<td>5-29</td>
<td>4400</td>
<td>23</td>
<td>680</td>
</tr>
<tr>
<td>Island CDF</td>
<td>25-35</td>
<td>980</td>
<td>38</td>
<td>2100</td>
</tr>
<tr>
<td>Near-shore CDF</td>
<td>15-25</td>
<td>6500</td>
<td>38</td>
<td>900</td>
</tr>
<tr>
<td>Upland CDF</td>
<td>20-25</td>
<td>6500</td>
<td>38</td>
<td>900</td>
</tr>
<tr>
<td>Landfill</td>
<td>29-70</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No Action</td>
<td>0-5</td>
<td>0</td>
<td>41</td>
<td>5200</td>
</tr>
<tr>
<td>Cement-Lock</td>
<td>54-75</td>
<td>0</td>
<td>14</td>
<td>0.00002</td>
</tr>
<tr>
<td>Manufactured Soil</td>
<td>54-60</td>
<td>750</td>
<td>18</td>
<td>8.7</td>
</tr>
</tbody>
</table>

Blue Text: Most Acceptable Value

Red Text: Least Acceptable Value
Limited Interviews: NY/NJ Harbor Study

<table>
<thead>
<tr>
<th>Weights</th>
<th>EPA</th>
<th>USACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Acceptability</td>
<td>7.4</td>
<td>12.5</td>
</tr>
<tr>
<td>Ecological Health</td>
<td>35.6</td>
<td>27.1</td>
</tr>
<tr>
<td>Human Health</td>
<td>47.0</td>
<td>40.7</td>
</tr>
<tr>
<td>Cost</td>
<td>10.0</td>
<td>19.7</td>
</tr>
</tbody>
</table>
Limited Interviews: NY/NJ Harbor Study

USACE weighting

- Cost
- Maximum Cancer Probability (Non-Barge Worker)
- Ecological Hazard Quotient
- Est. COC Conc in Fish / Risk-based Conc
- Complete Human Health Exposure Pathways
- Complete Ecological Exposure Pathways
- Ratio of Impacted Area to Facility Capacity

EPA weighting

- Cost
- Maximum Cancer Probability (Non-Barge Worker)
- Ecological Hazard Quotient
- Est. COC Conc in Fish / Risk-based Conc
- Complete Human Health Exposure Pathways
- Complete Ecological Exposure Pathways
- Ratio of Impacted Area to Facility Capacity
38.5 million cubic yards of dredged material produced in 30 years

Majority of combined needs from CT:
New Haven ~8.7 million cy
Bridgeport ~4.6 million cy
New London ~2.5 million cy
Connecticut River ~2.4 million cy
Clinton/Westbrook ~2.4 million cy
Norwalk ~2.2 million cy
Sustained & Active Participation: Long Island Sound

- DMMP requested by Governors of Connecticut and New York after the EPA designated changes to open water dredged-material disposal sites in LIS.

- Issue: Stakeholders disagree
 - States, Harbormasters, Marinas, Yacht Clubs, Boat Yards, Cargo Terminals, Power Plants, Military Facilities, State Piers, Ferry Terminals, Dredgers, etc.

- Result: $15M and 3 yrs later states & stakeholder fights reach US congress and process told to start over…
Sustained & Active Participation: Long Island Sound

- The process calls for Federal agencies to seek public input regarding development of the LIS DMMP.

- Earlier attempts at generating criteria focused on site-specific screening constraints; did not comprehensively address stakeholder values.

- USACE hosted a series of Working Group meetings to identify evaluation criteria based on stakeholder concerns.
Sustained & Active Participation: Long Island Sound

- **Individual stakeholder organizations** to “weight” the criteria and sub-criteria (which are defined by the metrics) to determine relative priorities and tradeoffs.

- **District staff** and other experts to perform technical assessments to “score” the placement sites for each region of Long Island Sound against these metrics.

- The stakeholder weights and technical scores can be combined in an **MCDA model** to rank the placement sites in each LIS region. Results will be reported as one component of the final LIS DMMP.
Sustained & Active Participation: Long Island Sound

<table>
<thead>
<tr>
<th>Environmental Media</th>
<th>Ecological Receptors</th>
<th>Economics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquatic</td>
<td>Birds</td>
<td>Short Term</td>
</tr>
<tr>
<td>- Source/destination water & sediment compatibility</td>
<td>- Short-term impacts or benefits to individual animals & habitats</td>
<td>- Direct construction</td>
</tr>
<tr>
<td></td>
<td>- Water quality</td>
<td>- Cost sharing requirement</td>
</tr>
<tr>
<td></td>
<td>- Sediment stability</td>
<td>- Monitoring costs</td>
</tr>
<tr>
<td>Terrestrial</td>
<td>Fish</td>
<td>- Market and infrastructure limitations</td>
</tr>
<tr>
<td>- Suitability for intended end use</td>
<td>- Long-term impacts or benefits to populations & habitats</td>
<td>- Indirect & opportunity costs</td>
</tr>
<tr>
<td></td>
<td>- Material stability and potential for erosion</td>
<td>Long Term</td>
</tr>
<tr>
<td></td>
<td>- Exposure and potential for transport</td>
<td>- Maintenance & management costs</td>
</tr>
<tr>
<td>Air</td>
<td>Shellfish</td>
<td>- Monitoring costs</td>
</tr>
<tr>
<td>- Short-term air quality (equipment & transportation)</td>
<td>- Short-term impacts or benefits to individual animals & habitats</td>
<td>- Change to commercial & recreational fisheries</td>
</tr>
<tr>
<td></td>
<td>- Exposure and potential for transport</td>
<td>- Ecosystem services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Hurricane-barrier & flood-protection benefits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Capacity issues</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Development & improvement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Indirect, cumulative, & opportunity costs</td>
</tr>
<tr>
<td>Human Welfare</td>
<td>Benthic</td>
<td>Other</td>
</tr>
<tr>
<td>Health</td>
<td>- Short-term impacts or benefits to individual animals & habitats</td>
<td></td>
</tr>
<tr>
<td>- Operational safety</td>
<td>- Long-term impacts or benefits to populations & habitats</td>
<td></td>
</tr>
<tr>
<td>- Navigation safety</td>
<td>- Other considerations</td>
<td></td>
</tr>
<tr>
<td>- Exposure to contaminants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Implementability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Beneficial use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Recreation, education, & research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Cultural and historical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Aesthetics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Other conflicting uses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Affected populations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sustained & Active Participation: Long Island Sound

Orgs Completing Interview Process
NY Dept. of State
CT Harbor Management Association
Norwalk Harbor Management Commission
Town of Guilford Harbor Mgmt. Association
US Navy - Submarine Base New London
New London Port Authority
Housatonic Valley Association
Long Island Sound Eastern Regional Council
LIS Assembly
CT Dept. of Transportation
Connecticut Marine Trade Association
Connecticut Maritime Coalition
New Haven Port Authority
NY Department of Environmental Conservation
Bridgeport Port Authority & Harbor Master
CT Dept. of Energy and Environmental Protection
CT Surfriders
Fairfield County Environmental Justice Network
US Coast Guard
Connecticut Fund for the Environment
Sustained & Active Participation: Long Island Sound

Average Main-Criteria Weights

*Note: error bars show one standard deviation about mean scores.

Innovative solutions for a safer, better world
Sustained & Active Participation: Long Island Sound
Multi-Objective Optimization with D2M2

- Dynamic tool for building transportation opt. models
- Mixed Integer Linear Programming approach
- Flexible, unique model formulation in each case:
 - Min/Max weighted sum of some multi-objective value function
 - Subject to set of volume & user defined system constraints
 - Given fixed and variable costs/impacts/effects for links and source & sink nodes (piecewise linear by volume & distance)
- Exclude prior solutions to explore near-optimal space
- Implemented with UI in Java & model in LPSOLVE
D2M2 Screenshots
D2M2 Houston Ship Channel Model

- Optimize navigation channel network, historical sedimentation and dredging, and system of placement areas for the Houston Ship Channel.

- Criteria include: Cost, oil & gas leases, endangered species, and oyster beds.
HSC Shoaling Rates (Dredging Needs)
HSC Placement Areas & Capacities
HSC D2M2 Evaluation Criteria

Active Oil and Gas Lease Areas: Proximity to a PA may impact accessibility.

Species observation sightings:

- Endangered species habitat concerns
- Oyster beds in the HSC and Gal Bay area
HSC D2M2 Site Network
HSC D2M2 Results

If costs and impacts are considered equally important, the optimal routing costs 50% more than the minimize cost scenario, and has a significant relative impact savings for oysters and oil/gas leases.

Comparing cost and impact results from two D2M2 scenarios

<table>
<thead>
<tr>
<th></th>
<th>Cost/CY or Relative Impact/CY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC1: Minimize Cost</td>
<td>SC2: Balance Cost and Impacts; Equal Weights</td>
</tr>
</tbody>
</table>

Innovative solutions for a safer, better world
HSC D2M2 Results

SWG RSM Houston Ship Channel Placement Area Optimization Viewer

- Current Dredging Plan (D2M2)
- Equal Weights
- Minimize Costs
 - Galveston
 - Houston Ship Channel
 - Texas City
- Environmental Data
- Channel Shoaling Rate (CSAT)
- Sediment Budget (SBA S)
- Sediment Boring Locations (SAGA)
- Bathymetry
- Navigation Channel Alignment (NCF)
- Inactive Placement Areas
- Active Placement Areas
- Nautical Charts

Cost Minimizing Scenario
HSC D2M2 Results

SWG RSM Houston Ship Channel Placement Area Optimization Viewer
This viewer displays the output of the various tools created by ERDC to manage dredged material placement.

Layers
- Current Dredging Plan (D2M2)
 - Equal Weights
 - Galveston
 - Houston Ship Channel
 - Texas City
 - Minimize Costs
 - Environmental Data
- Channel Shoaling Rate (CSAT)
- Sediment Budget (SBEAS)
- Sediment Boring Locations (SAGA)
- Bathymetry
- Navigation Channel Alignment (NCF)
- Inactive Placement Areas
- Active Placement Areas
- Nautical Charts

Balanced Costs & Impacts Scenario

Innovative solutions for a safer, better world
Geospatial MCDA
GEAR Summary

- GEAR—“Geo-centric Environment for Analysis & Reasoning”
- R&D prototype of spatial decision analysis software developed over multiple years with millions of dollars of US Government investment.
- GIS-based Multicriteria Decision Analysis (GIS-MCDA) gives users robust capability to efficiently and intuitively assess, analyze, and compare alternative outcomes to generate actionable end products.
- Enables the discovery, retrieval, organization, aggregation, analysis, and visualization of data from heterogeneous sources to transform open data to open analytics.
- Emphasizes a web-enabled software architecture capable of scaling to devices that support modern web browsers (e.g., desktops, tablets, mobile devices). Flexible and interoperable framework facilitates open, participatory, and collaborative analyses.
Summary of Core Functionality

- **Decision Analysis**: GEAR’s decision based capabilities allow users to manage and interpret data to answer higher order questions.

- **User friendly interface**: flexible, scalable, drag and drop capabilities.

- **Data sources**: GEAR ingests a wide range of data sources for spatial analysis, including uploaded GIS files and dynamic web services.

- **Value functions**: translate data measured in different units into normalized value scores, then aggregated to evaluate alternatives.

- **Analytical power & flexibility**: vector analysis of polygons, points, lines, or any combinations thereof; temporally enabled analyses.

- **Data modification**: edit, add, or remove data fields/entries using math and spatial operators (e.g., +, -, *, log, spatial join, extract value).

- **Potential applications**: many, including humanitarian assistance, disaster response, tactical operations planning, site suitability, environmental analysis, resilience & vulnerability analyses, etc.
Chicago Demo Summary

Scenario: Infectious disease outbreak in Chicago
Goal: Prioritize existing health centers for logistic and medical response
Assumptions: Ideal locations are central to vulnerable population, near major transportation, and far from other emergency services. Seven criteria used to measure the three objectives.
Step: Add data sources
Chicago Demo - Step by Step Walkthrough

Step: Inspect data sources and attributes in map, table and graph form
Step: Choose decision alternatives and add objectives and criteria

Chicago Demo - Step by Step Walkthrough

Decision Analysis

- Maximize population within 1 mile radius
- Maximize percentage of people under 5yrs and over 60yrs
- Locate near transportation infrastructure
- Maximize distance to Metra stations
- Maximize distance to roads
- Locate far from other emergency services
- Maximize distance to hospitals
- Maximize distance to police stations
- Maximize distance to fire stations

Analyzing Health Centers for Locate close to vulnerable population, Locate near transportation infrastructure and Locate far from other emergency services

Edit Value Function

- Name: Maximize population in 1 mile rad
- Type: Linear
- Data Source: Health Centers
- Attribute: SUM_MWTOT
- From Value: 1568
- To Value: 6355

Edit Value Function

- Name: Minimize distance to Metra station
- Type: Proximity
- Data Source: Health Centers
- To Data Source: Metra Stations
- Minimum Distance: 0
- Maximum Distance: 3000
- Higher Score: Closer

Innovative solutions for a safer, better world
Step 6: Select Analyze button and visualize results in map and graph form.
Chemical Spill Demo Overview

Scenario: Local responders want to identify areas of need after Elk River, WV, chemical spill.

Goal: Evaluate different areas in Charleston, WV, based on anticipated risk & need.

Assumptions: Combine data for chemical spill risk (point data showing chemical concentrations sampled from hydrants) and vehicle access (polygons, representing greater inability to leave).

Light colored grid zones have low vehicle access & high chemical concentrations: Higher priority for response.
Hydropower Demo Overview

Scenario: US Army wants to invest in hydropower development.

Goal: Screen good locations for new hydro near existing military installations.

Assumptions: Prioritize existing dams based on available hydropower potential and distance from installation (with a threshold based on a maximum of 50km).
Bangladesh Demo Summary

Scenario: Ebola outbreak in Dhaka, Bangladesh
Goal: Prioritize local schools for temporary medical triage facilities
Assumptions: Ideal locations are central to vulnerable population and population centers, near public transportation, and far from other emergency services. Six criteria used to measure the four main objectives.
Financial Risk Demo Overview

Scenario: US regulatory agency wants to evaluate financial risks with a geographic component

Goal: Screen a large number of financial firms for risky behavior and visualize results.

Assumptions: Identify firms based on their size, whether they have been flagged as suspicious, time since their last regulatory review, etc. (case study is real, data shown here is notional).
Conclusions

- Decision Analytic approaches represent the practical application of analytical tools to support complex decisions, allocation problems and planning processes.
- Benefits include transparency, flexibility, repeatability between decision makers, and responsiveness to multiple planning scenarios.
- Applications are diverse but all require decision maker / stakeholder consideration of multiple criteria/alternatives.
- This can 1) help with integration of methods in tools, and 2) implement some ‘default’ decision models for cases.
References

Backup Slides:
Additional Project Snapshots
Horseshoe Bend Project

Diverse Stakeholders

- Flood control
- Environmental
- Tribal interests
- Commercial
- Recreation

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Ranking (1-8)</th>
<th>Score (0-100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levee Safety / Reliability</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Fish / Salmon Health</td>
<td>2</td>
<td>85</td>
</tr>
<tr>
<td>Cost</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>Implementability</td>
<td>4</td>
<td>55</td>
</tr>
<tr>
<td>Flood Risk Management</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>Community Resilience</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>Tribal and Public Use</td>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td>Water Quality</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

Project Timeline:

- Project Kickoff
- Criteria Workshop
- Solutions Workshop
- Results Workshop
- Finalize Report

- Develop Value Heirarchy
- Refine & Evaluate Alternatives
- Describe Process & Lessons Learned
- Review Report
- Conduct Analysis
- Elicit Weights
NY/NJ Harbor – Multiple Types of Sediment Contamination

Map of sediment texture

Map of sediment contamination

Combined map of sediment texture and contamination
The support given by various LOEs for site suitability must be interpreted in the context of known metadata about the data source, e.g., its relevance, quality, and resolution.

New Haven Harbor
Weight of Evidence Assessment

Morris Cove

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Relevance</th>
<th>Quality</th>
<th>Resolution</th>
<th>LOE Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>HIGH: Budget constraints were required to be met</td>
<td>HIGH: Extensive holistic cost analysis</td>
<td>MED: 3 significant figures used</td>
<td>MED: $10.8M = 125% increase</td>
</tr>
<tr>
<td>Hist. Management</td>
<td>MED-LOW: Historic use is not a required nor limiting factor but is informative</td>
<td>N/A</td>
<td>N/A</td>
<td>MED: Not previously used</td>
</tr>
<tr>
<td>Environmental Effects</td>
<td>HIGH: Federal regulations were required to be met for all project aspects</td>
<td>MED: Fairly vague descriptions of environmental surveys for total impact were taken</td>
<td>N/A</td>
<td>HIGH: Supporting Essential Fish Habitat Lower emissions</td>
</tr>
<tr>
<td>Bioassay</td>
<td>HIGH: Contaminants could destroy essential habitat</td>
<td>HIGH: 3 different in vivo tests</td>
<td>MED-LOW: Sample size of 6</td>
<td>MED: Low levels of PCBs and DDTs detected</td>
</tr>
<tr>
<td>Sediment Type</td>
<td>HIGH: Incompatible sediment could destroy essential habitat</td>
<td>MED: Vibracore considered 2nd tier</td>
<td>HIGH: Sample size of 19</td>
<td>HIGH: Compatible</td>
</tr>
<tr>
<td>Site Availability</td>
<td>HIGH: Key requirement for placement</td>
<td>MED: Recent surveys conducted for site availability</td>
<td>N/A</td>
<td>MED: Will accept only 75% of total material</td>
</tr>
<tr>
<td>Socio-Political</td>
<td>MED-HIGH: Public unrest could make an alternative less feasible</td>
<td>MED-LOW: Speculation, no known specific polling</td>
<td>N/A</td>
<td>MED: - No new infrastructure - Longer project timeline</td>
</tr>
</tbody>
</table>
Portfolio Approach for Cruise Time Allocation

Key Participants

- **Sponsor:** NOAA NMFS

Purpose/Objectives

- The approach can ensure the portfolios of cruises selected meet the NOAA NMFS’s goals for its science portfolio.
- Documenting the value of each cruise, whether completed or not, allows the agency to argue for increased resources.
- Portfolio decision model is designed to make transparent the current criteria being used in NMFS decisions NOT replace them.

Approach

- New methodology for selecting appropriate portfolios of cruises given the value they deliver, both technically and to the agency and stakeholders.
- Technical and non-technical criteria were developed, and the FY13 white boat cruises were scored as a proof-of-concept.
- Results presented to the Vessel Coordinators and Science Board.
- Science board to determine the scope, complexity and data sources for forward-looking analyses.

Results

- Initial proof-of-concept using FY13 White Boat Cruises
- Presented to Vessel Coordinators (May 2014)
- Presented to Science Advisory Board (June 2014)
- White paper for NOAA NMFS Science Board (June 2014)
Resilience Assessment: Jamaica Bay Case Study

Key Participants
• Sponsor: CERB

Purpose/Objectives
• Existing risk management strategy is not sufficient to ensure coastal community safety in the face of climate change and uncertain future events.
• Assessments of coastal community resilience that incorporate the physical, social, and information aspects of a community in both the preparation and recovery from events help responsible agencies, such as USACE, to evaluate the efficacy of proposed projects and identify points of reduce impact without support in other community sectors.
• The goal of the project is to provide a quantitative assessment of resilience that can be incorporated into planning models.

Approach
• Use a matrix approach to defining the assessment space for resilience: capacity across the physical-information-cognitive-social domains in the prepare-absorb-recover-adapt stages.
• For Jamaica Bay case study, use narrative reports and community/stakeholder interviews to define critical functions of the system and identify relevant metrics for each capacity cell.
• MCDA methodologies can be used to aggregate data into a final score of resilience that provides a baseline to evaluate project proposals against.

Results
• Primary efforts by government agencies occur in the physical and information domain during the prepare stage and in the physical domain of the recovery stage, efforts dictated largely by funding availability and public visibility.
• Continued efforts to improve reliability and robustness of physical structures may result in diminishing returns in the absence of additional efforts to develop capacities in the cognitive (organizational decision structures) and social domains and in the adaptation phase.
• This assessment is not complete; the matrix shown is hypothetical.
Innovative solutions for a safer, better world

Humanitarian Assistance Project Site Suitability

Key Participants

• Sponsor: ERDC TEC, Office of Naval Reseach
• Gov’t Contributors: ERDC TEC & EL, AGC, Pacific Disaster Center
• Gov’t Proponents: Ike Clark & Steve Carro (SOUTHCOM J45), Kevin Stanley (SOUTHCOM J7), LTC Travis Lindberg (USACE LNO to SOUTHCOM), Tiger Hession (PACOM J45)

Purpose/Objectives

• DOD Humanitarian Assistance and Disaster Response (HADR) managers often face the complex task of prioritizing limited funds for investment across broad regions of varying need.
• The SHAPE project presents a framework for HADR project evaluations & site suitability analysis based on spatial and other data via Multi-Criteria Decision Analysis (MCDA)
• Provides a transparent, flexible, repeatable, data-driven and justifiable, analytical approach for evaluating projects.

Approach

• Integrates data across competing objectives via value functions and importance weights.
• Evaluates HADR projects based on local hazard exposure, community resilience, investment sustainability, & agency mission specific criteria.
• Can optimize a portfolio of potential projects based on costs & operational/programmatic constraints.
• Will be integrated into the Pacific Disaster Center’s DisasterAWARE web platform, which is already used heavily by SOUTHCOM and others.

Results

• Case study demonstrating approach with risk and vulnerability site screening data from El Salvador.
 - Presented to SOUTHCOM and other COCOM HADR managers.
• In person meeting with SOUTCOM HADR community, where ideas were well received.
• Additional journal article in preparation.
• Integration with PDC DisasterAWARE tool planned for FY15.
Value of Information Approach to Prioritize Nanomaterial Research
Combined Life-Cycle Assessment and MCDA for Treated Lumber Selection

Key Participants
- **Sponsor(s):** USACE
- **Gov’t Contributors:**

Purpose/Objectives
- The DOD ships munitions around the world on treated wood pallets. Treatment should ensure that materials are stable in harsh environments and do not degrade munitions, but are also cost effective.
- The DOD currently uses zinc naphthenate (ZN) as a lumber treatment due to its durability but ZN is no longer a registered product with EPA and the DOD must find a suitable replacement.
- The goal of the LCA is to identify environmental and health impacts associated the production of each lumber treatment.
- The goal of the MCDA is to weigh the environmental impacts with the performance results and costs to identify preferred lumber alternatives.

Approach
- Develop inventories of life-cycle impacts associated with production of six treated lumber products.
- Compare the environmental and human health impacts (global warming, acidification, ecotoxicity, etc.) between the six alternatives using LCA analysis and tools.
- Use decision analysis methods to assign relative values to the LCA risks as well as the benefits (low cost, durability, and corrosiveness) of each treatment alternative.
- Use preferences for each of neutral, environmental and military decision makers to identify the preferred treatment alternative for each type of stakeholder.

Results
- All three stakeholders determined CQ to be the least favorable alternative.
- Military stakeholder determined ZN to be the most favorable alternative; environmental stakeholder found MCQ (Micronized Copper Quaternary) to be preferred. ZN is no longer an acceptable option but the decision matrix shows that MCQ is a nearly equally favorable alternative for military and could be an effective substitute.
- While the MCQ was ranked second for the military stakeholder, the converse was not true for the environmental ranking, where ACQ (Alkaline Copper Quaternary) was the second most favorable alternative.
- In summary, a specific ranking of alternative in terms of preference across all risk and benefit criteria can be determined for any stakeholder. In addition, treatment alternatives ranked highly across all stakeholder can be used to find a globally acceptable alternative.