BIOENERGY TECHNOLOGIES OFFICE

Energy Efficiency & Renewable Energy

Excellence in Bioenergy Innovation—A Presentation of 2015 R&D 100 Award Winning Projects January 21, 2016

Bioenergy Technologies Office (BETO)

Agenda

- Introduction and BETO Overview
 - Erica Qiao, BCS, Incorporated
- Excellence in Bioenergy Innovation—A Presentation of 2015 R&D 100 Award Winning Projects
 - Dr. Jianping Yu, National Renewable Energy Laboratory
 - Douglas Elliott, Pacific Northwest National Laboratory

Please record any questions and comment you may have during the webinar and send them to <u>eere bioenergy@ee.doe.gov</u>

As a follow-up to the webinar, the presenter(s) will provide responses to selected questions.

Slides from this presentation will be posted online: <u>http://www.energy.gov/eere/bioenergy/webinars</u>

For general questions regarding the Bioenergy Technologies Office, please email <u>eere_bioenergy@ee.doe.gov</u>

Bioenergy Technologies Office Webinar Series

Started in May 2010 to highlight "hot topics" in biomass and bioenergy industry.

Find past webinars and today's slides on the Office's website: <u>http://www.energy.gov/e</u> <u>ere/bioenergy/webinars</u>

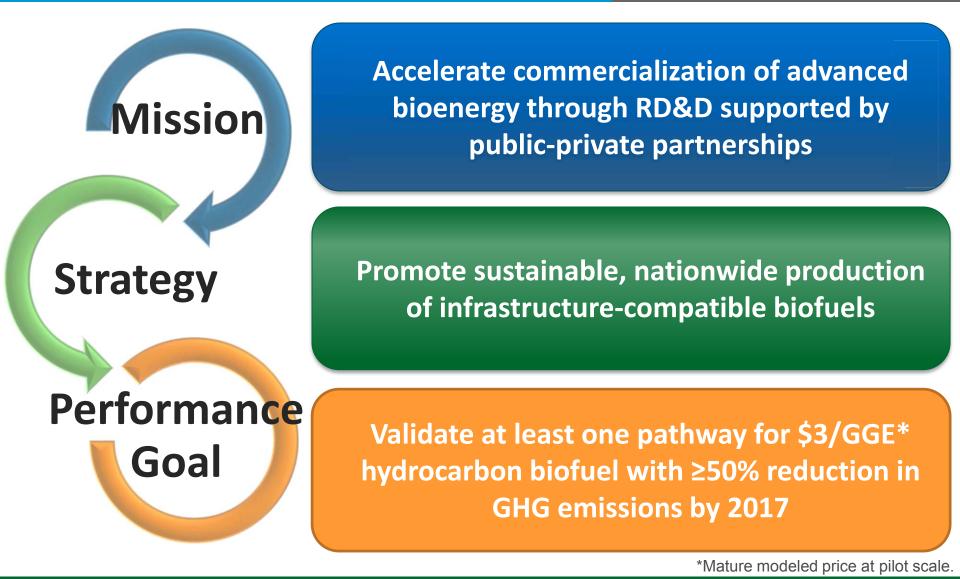
ENERGY.GOV Office of Energy Efficiency & Renewable Energy								
SERVICES	EFFICIENCY	RENEWABLES	TRANSPORTATION	ABOUT US	OFFICES >			
Home » Events » We	binars							
WEBINAR	RS							
Bioenergy Home	This page	This page contains presentation slides and audio files from the Bioenergy Technologies Office's webinar seri						
About the Bioener Technologies Offi		activities and features "Hot Topics" discussions relevant to the development of renewable fuels, power, and						
Research & Development	UPCON	UPCOMING WEBINARS						
Education & Workt	force January	January 21, 2016—Excellence in Bioenergy Innovation—A Presentation of 2015 R&D 100 Award Wi The U.S. Department of Energy (DOE) will present a live webinar titled "Excellence in Bioenergy Innovation— Award Winning Projects" on Thursday, January 21, 2016 from 1 p.m. to 2 p.m. Eastern Standard Time. The						
Financial Opportur	nities The U.S.							
Information Resou								
News		research by Dr. Jianping Yu of the National Renewable Energy Laboratory (NREL) and Douglass Elliott of Pε (DNN), wing or 2015 DRD 400 Average for buildbarry biogenergy advector to the elements of the second se						
Events	(PININL)-	(PNNL)—winners of 2015 R&D 100 Awards for breakthrough bioenergy advances. Register to attend						
Conferences	January	January 21, 2016—BioenergizeME Office Hours Webinar: Must-Know Tips for the 2016 Bioenergize						
Meetings & Workshops	, , ,							
Webinars		Infographics are a useful visual tool for explaining complex information, numbers, or data quickly and effectiv an experienced graphic designer to make an eye-catching infographic. To assist student teams with the 201 Challenge, this webinar will highlight strategies for designing engaging infographics and will provide creative a to your infographic and motivate others to share it across their social media networks. The webinar will also previous challenges and tips from last year's winning team. The U.S. Department of Energy (DOE) Bioenerg engages 9th–12th-grade high school teams to research one of four cross-curricular bioenergy topics and des they have learned. This webinar is part of the BioenergizeME Office Hours webinar series developed by the E Register to attend the webinar .						
Contact Us	Challenge to your inf previous c engages s they have							

The Challenge and the Opportunity

THE CHALLENGE

- More than \$1 Billion is spent every three days on U.S. crude oil imports
- Transportation accounts for 2/3^{rds} of petroleum consumption and 26% of GHG emissions in the U.S.

THE OPPORTUNITY


- More than 1 Billion tons of biomass could be sustainably produced in the U.S.
- Biomass could displace 30% of U.S. petroleum use by 2030 and reduce annual CO₂e by 550 million tons, or 10% of U.S. energy emissions

America's biomass resources can help mitigate petroleum dependence

Bioenergy Technologies Office

BETO reduces risks and costs to commercialization through RD&D

BETO's Core Focus Areas

Program Portfolio Management

 Systems-Level Analysis
 Performance Validation and Assessment Planning Quarterly Portfolio Review • **MYPP**

- Peer Review Merit Review
 - Competitive
 Non-competitive • Lab Capabilities Matrix

Research, Development, Demonstration, & Market Transformation

Feedstock Supply & **Logistics R&D**

- Terrestrial •
- Algae •
- Product .

Logistics Preprocessing

Conversion R&D

- **Biochemical**
- Thermochemical
- Deconstruction
- **Biointermediate**
- Upgrading

Demonstration

- & Market Transformation
 - Integrated **Biorefineries**
- **Biofuels** Distribution Infrastructure

Sustainability

- **Sustainability** Analysis
- Sustainable System Design

Strategic Analysis

Cross Cutting

- **Technology** and Resource Assessment
- Market and **Impact Analysis**
- Model Development & Data compilation

Strategic Communications

- **New Communications** Vehicles & Outlets
- Awareness and Support of Office BIO ENERGY
 - Benefits of

•

Bioenergy/Bioproducts

Cyanobacterial Bio-ethylene

Jianping Yu

January 20, 2016

BETO Webinar

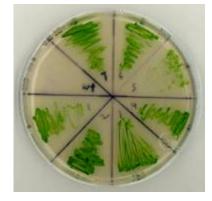
•NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

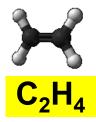
Goal Statement

To develop a novel photosynthetic ethylene production technology using cyanobacteria. This technology has potential to produce biofuels and green chemicals

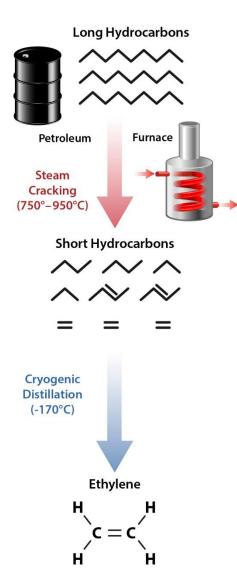
(1) as a sustainable alternative to fossil-based feedstock;

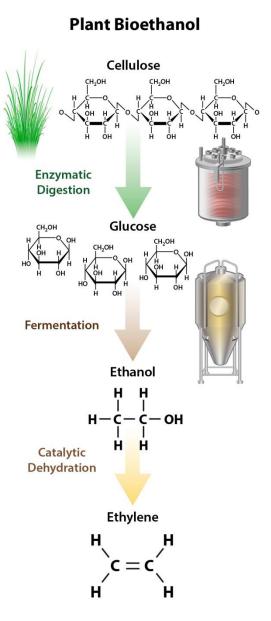
(2) with low water, CO_2 and nutrients input;

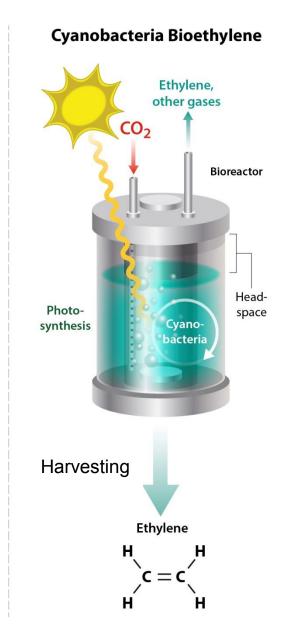

(3) while not competing with agriculture for arable land and fresh water.


Cyanobacteria

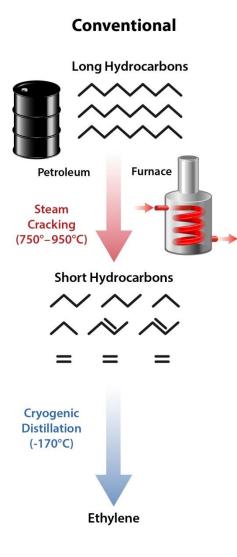
- Cyanobacteria, aka blue-green algae, are bacteria that perform oxygenic photosynthesis, converting CO₂ to organic compounds.
- Cyanobacteria are primary solar energy converters in diverse ecosystems.
- Genetic engineering tools are well developed in some cyanobacteria, which enables introduction of new pathways into metabolism for the production of target molecules such as ethylene.

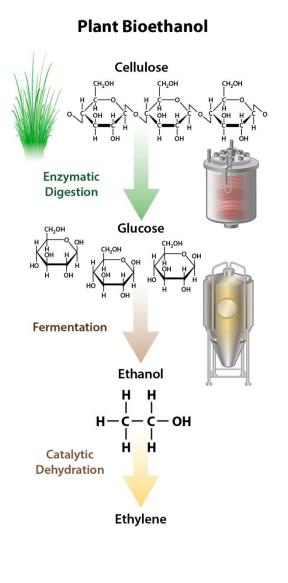

Ethylene

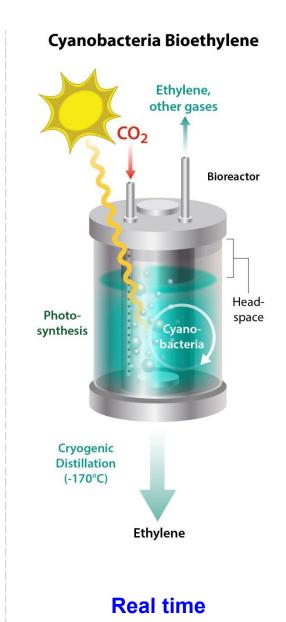



- Ethylene is one of the most produced organic compounds worldwide.
- Feedstock for a wide range of materials and chemicals such as plastics.
- Can be polymerized to liquid transportation fuels.
- Currently produced from fossil resources organic compounds derived from photosynthesis that occurred millions of years ago.
- More renewable sources of ethylene are desirable.

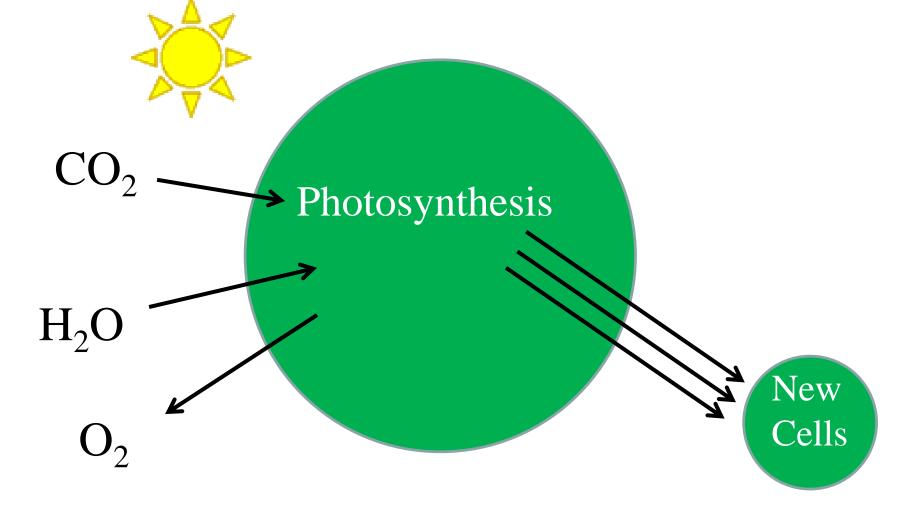
Ethylene Production Scenarios

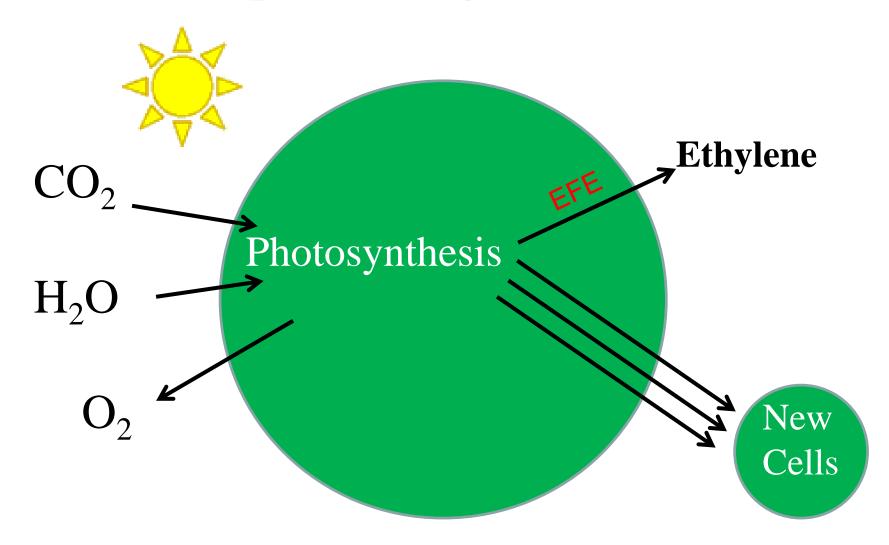

Conventional





Carbon in ethylene comes from photosynthesis

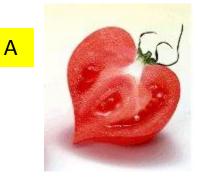



Millions of years

Months

The Cyanobacterium Synechocystis 6803 Wild Type

Genetically engineered ethylene producing strains

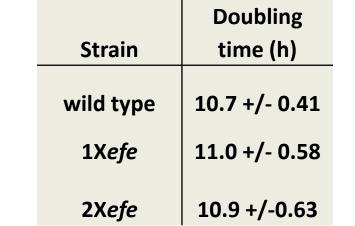


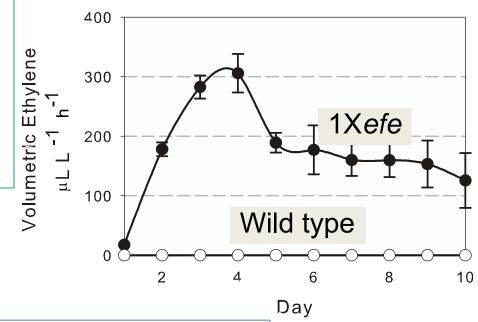
EFE: ethylene-forming enzyme. Where does it come from?

Biological Ethylene Production and EFE

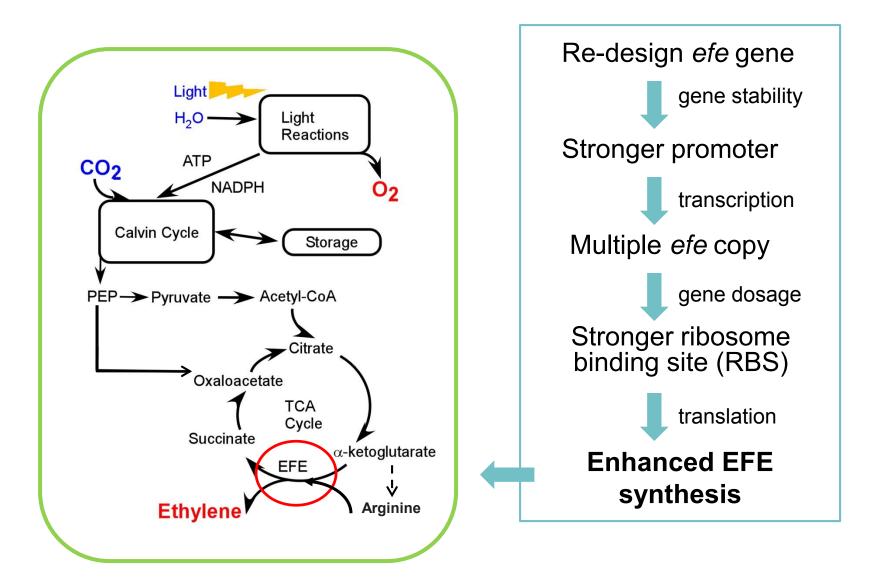
- Ethylene is a plant hormone that regulates many processes in plant growth (A).
- Plant pathogens or symbiotic microbes use ethylene to weaken plant defense (B); some have EFE.
- EFE is sourced from *Pseudomonas syringae* (C).
- EFE is not well understood, a challenge for its biotech application. A reaction formula has been proposed by Fukuda *et al* 1992 (D).
 - D Alpha-ketoglutarate (AKG) + O_2 + L-arginine \rightarrow ethylene + succinate + CO_2 + guanidine + L-delta-pyrroline-5-carboxylate (P5C)

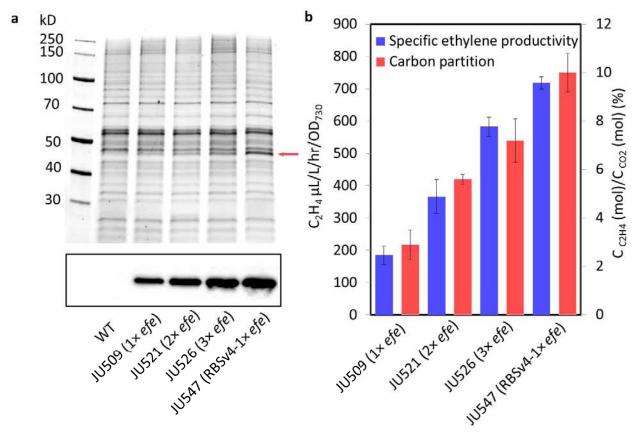
Eckert et al 2014 Biotechnology for Biofuels





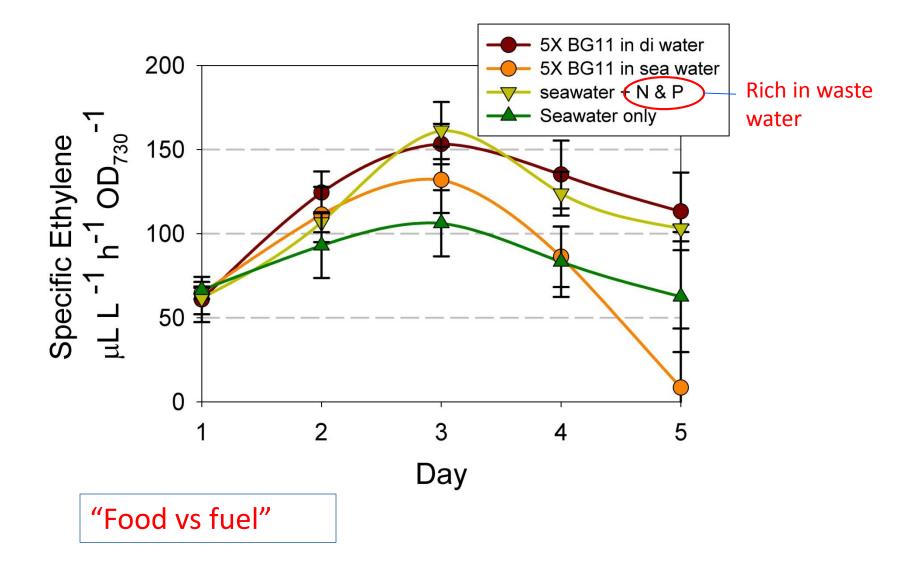
Ethylene is not toxic to Synechocystis 6803


- Added ethylene has no effect on culture growth
- Ethylene-producing cultures grow as fast as WT
- Now how can we make more ethylene?
- What is the limiting factor?



Ungerer et al. Energy and Environmental Science 2012

Increasing EFE levels...

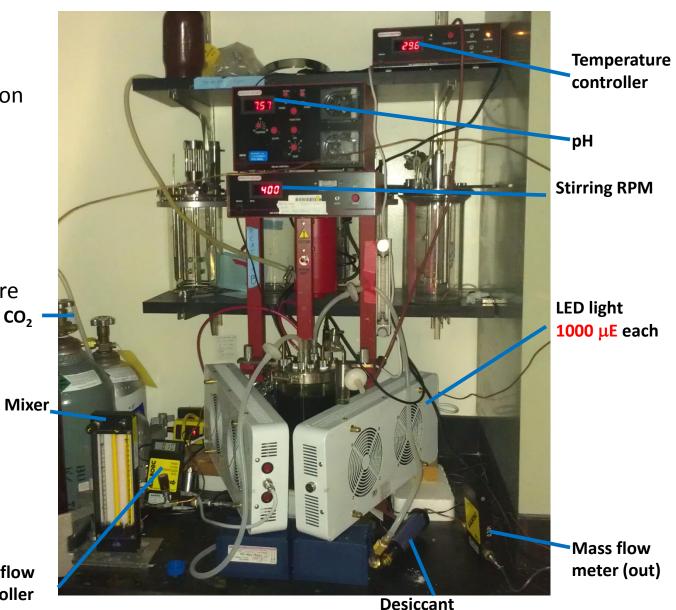

Higher ethylene productivity

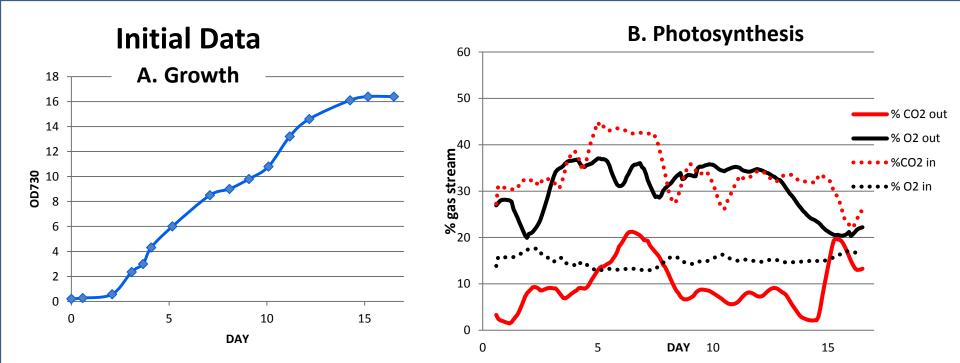
- Transfer to a sealed tube and incubate
- Headspace ethylene and CO₂ are measured by GC

Use seawater for ethylene production

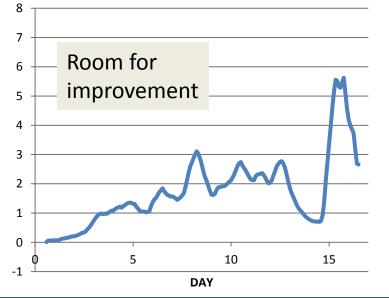
Continuous Ethylene Production

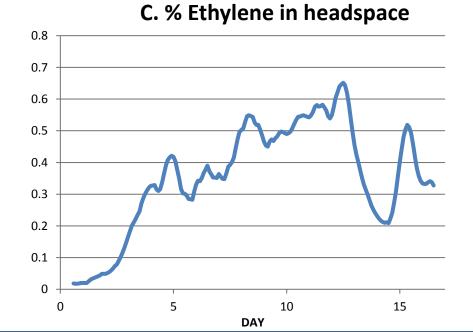
2L PBR

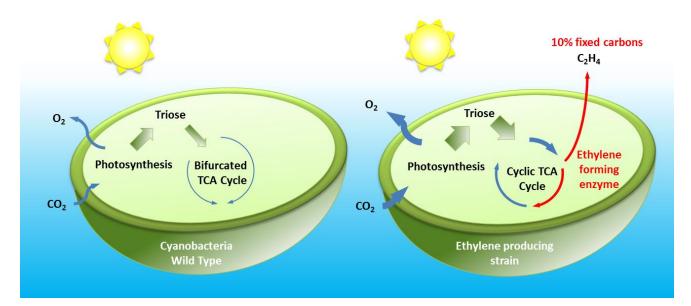

•Continuous data collection from both in stream and out stream via GC

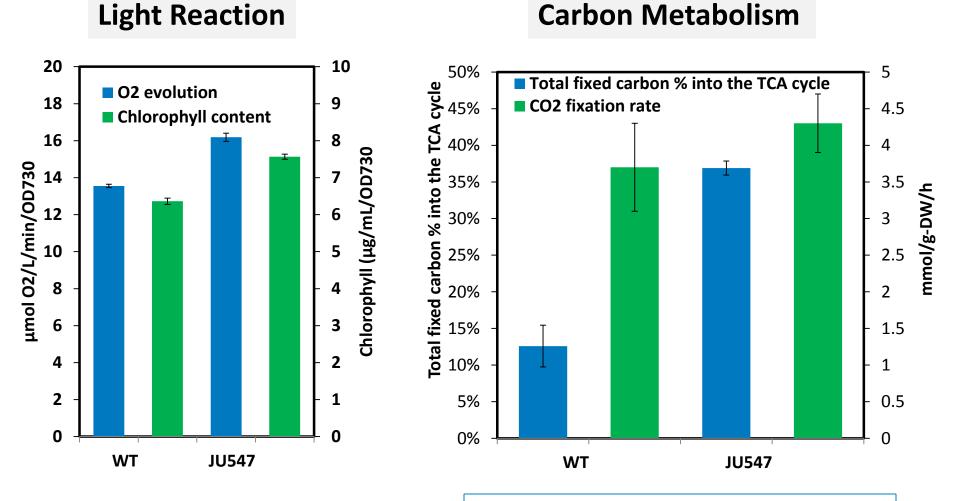

> •CO₂ •O₂ •Ethylene

•Sterile sampling of culture


Adjustable (future optimization) •CO₂ concentration Gas Mixer •light intensity •gas flow rate •Temperature •stirring rate

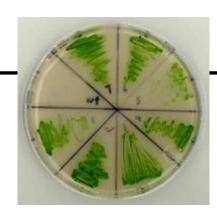

> Mass flow Controller (in)


D. % CO2 to ethylene


A deeper look into metabolism yields surprises

- TCA cycle operates as a cycle.
- Carbon flux to TCA cycle increased by 3X.
- Growth rate is maintained despite loss of a lot of carbon!
- Photosynthesis is stimulated to compensate for carbon loss.

Xiong et al., Nature Plants 2015a


Ethylene production stimulates photosynthesis

Rubisco activity also increased

Conclusions

• A cyanobacterium has been genetically engineered to convert CO₂ to ethylene.

- Up to 10% of fixed carbons are directed to ethylene.
- Current limiting factor is EFE substrate supply*.
- The organism responds to ethylene production by rewiring metabolic network and stimulating photosynthesis.

*Overcoming EFE substrate supply limitation in *E. coli*: Lynch *et al* 2016 Biotechnology for Biofuels.

Future Directions

Strain development

- Increase carbon conversion efficiency from up to 10% towards 90% using synthetic biology approaches
- Rate limiting factor has shifted from EFE level to substrate supply
- Increase carbon flux to EFE substrates

Reactor development and systems integration

- Develop cultivation/production/harvesting system tailored for ethylene
- Technoeconomic analysis; life cycle analysis

Lynch *et al* 2016 Biotechnology for Biofuels.

Acknowledgements

Justin Ungerer Wei Xiong **Bo Wang Pin-Ching Maness** Mark Davis Phil Pienkos Maria Ghirardi Ling Tao Jennifer Markham John Fei

NREL Photobiology Group

Funding Support DOE BETO

> DOE FCTO NREL LDRD

jianping.yu@nrel.gov

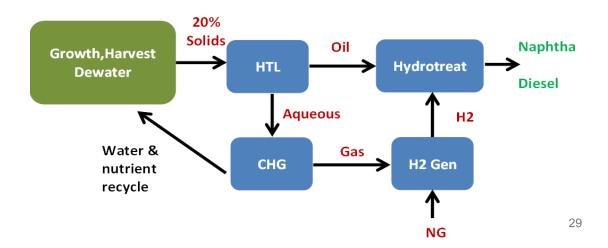
Proudly Operated by Battelle Since 1965

Hydrothermal process to convert wet biomass into biofuels

DOUG ELLIOTT

Excellence in Bioenergy Innovation Webinar—A Presentation of 2015 R&D 100 Award Winning Projects

Outline

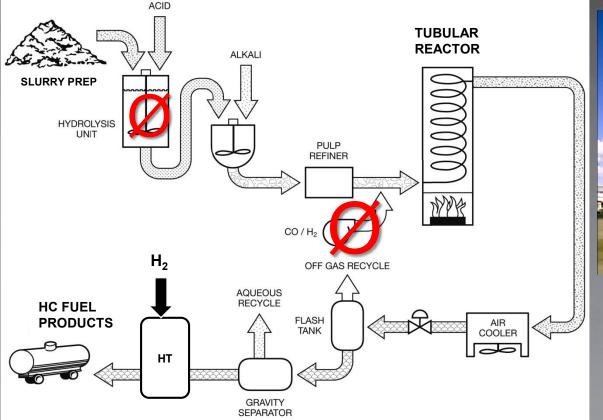


Proudly Operated by Battelle Since 1965

Process overview

HTL at PNNL

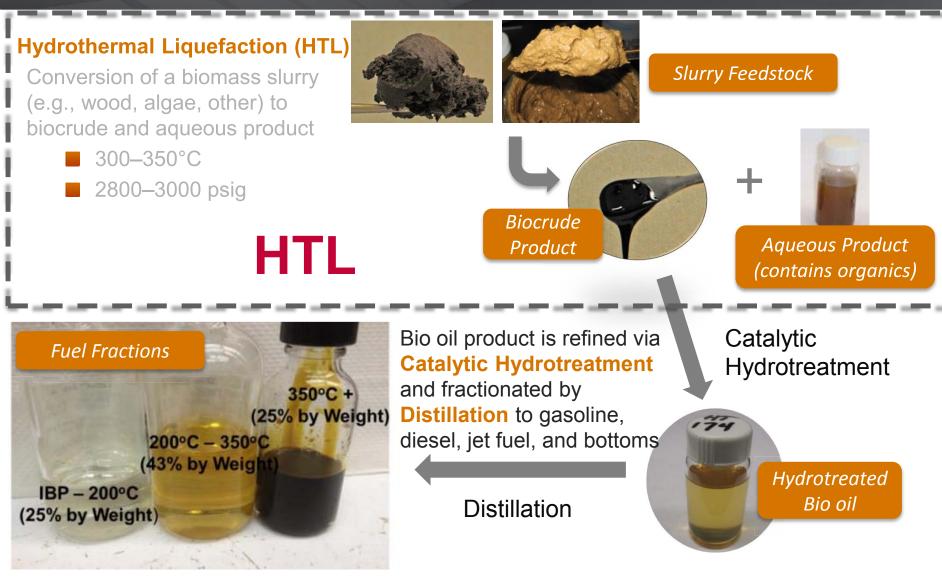
- Continuous process
- Range of feedstocks
- Gravity-separable biocrude
- Upgrading of HTL biocrude
- CHG of aqueous phase
- Commercialization and future work



Hydrothermal Liquefaction and Hydrotreating

Proudly Operated by Battelle Since 1965

Albany, Oregon, USA 1977-1982

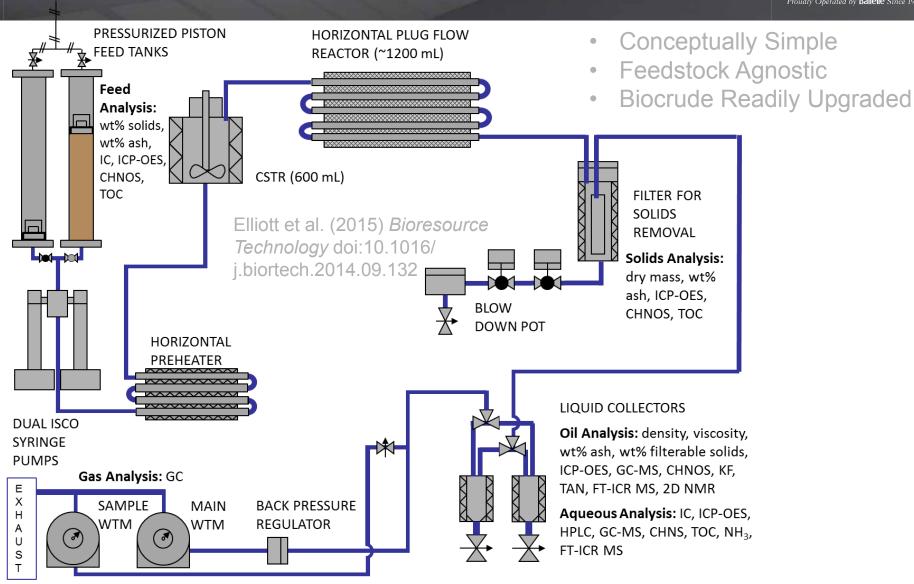

1 t/d Douglas fir wood

Slow pyrolysis in pH-moderated, pressurized water

HTL Overview

Proudly Operated by Battelle Since 1965

Product Description

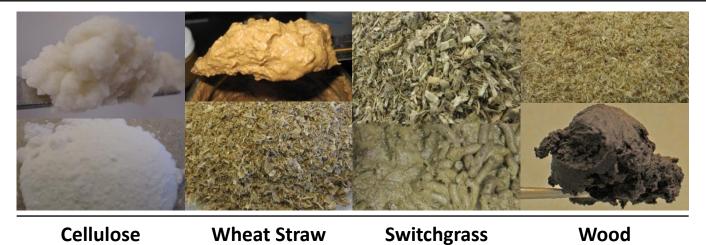

Proudly Operated by Battelle Since 1965

Oil product

- water insoluble
- viscosity -- fluid to cold flow
- 25-50% mass yield, 50-70% carbon basis
- some dissolved water
- Gas product
 - primarily carbon dioxide
 - 5-15% yield carbon basis
- Aqueous phase
 - acid components (salts)
 - some soluble organics
- Solid product
 - precipitated minerals
 - some carbon ~5%

Simplified Process Flow Diagram

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965



HTL Lignocellulosic Feedstocks

Proudly Operated by **Battelle** Since 1965

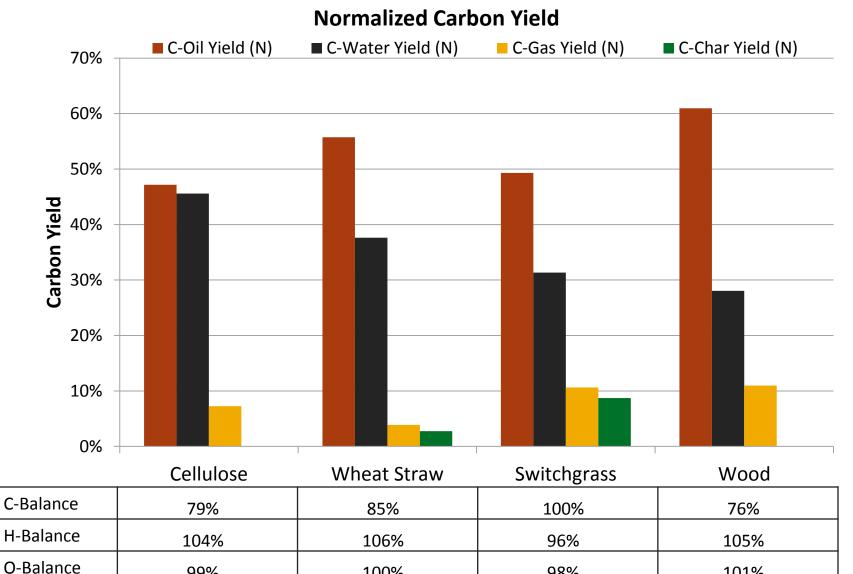
Feed	Description	Solids Conc. [wt%]	Density [g/mL]
Cellulose	ARBOCEL [®] B800 water-insoluble cellulose (J Rettenmaier USA)	13.8	1.06
Wheat Straw	Wheat straw, 3/16 inch grind (Idaho National Laboratory)	12.7	1.03
Switchgrass	Alamo switchgrass, < #70 sieve (Oklahoma State University)	15.0	1.06
Wood	Catch Light Pine Forest Residue, <400 μm (Iowa State University)	15.2	1.04

Experimental Conditions and Yields

Proudly Operated by Battelle Since 1965

- Steady state window duration: 2-3 hours
- Average temperature: 345-350°C
- Average pressure: 2900-2950 psig
- Slurry feed rate: 2.0 L/h (1.5 L/h wood)

	Cellulose	Wheat Straw	Switchgrass	Wood
Overall Mass Balance	99%	100%	98%	100%
Normalized Yields				
Oil Yield (dry basis) [g/g _{fd}]	22%	28%	31%	31%
Solid Yield [g/g _{fd}]	0%	1%	5%	0%
Gas Yield [g/g _{fd}]	10%	6%	18%	16%
Aqueous Yield [g/g _{fd}]*	69%	65%	46%	53%


*Aqueous yield calculated by difference

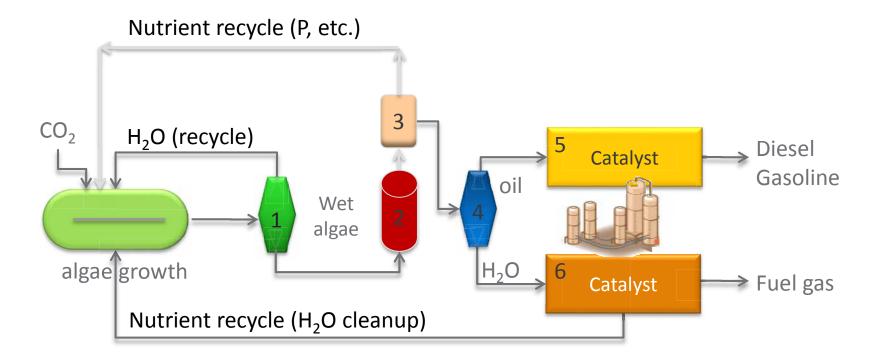
Carbon Balance and Yield

99%

Proudly Operated by Battelle Since 1965

100%

98%


101%

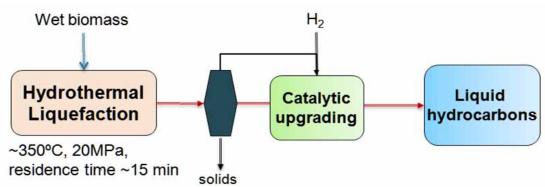
Biocrude Composition (Dry Basis)

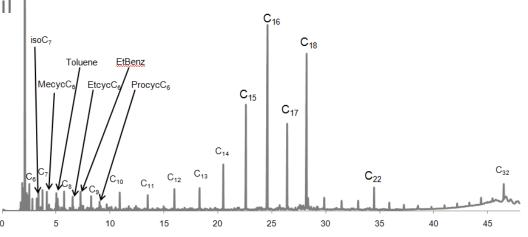
	Cellulose	Wheat Straw	Switchgrass	Wood
Carbon [wt%]	88%	83%	77%	78%
Hydrogen [wt%]	7.9%	8.5%	7.4%	7.7%
H:C [mol ratio]	1.08	1.21	1.14	1.18
HHV [MJ/kg, calc]	39.5	38.1	34.1	35.0
Oxygen [wt%]	4.4%	7.6%	14.4%	13.7%
Nitrogen [wt%]	0.0%	0.8%	0.9%	0.2%
Sulfur [wt%]	0.0%	0.1%	0.1%	0.0%
TAN [mg _{KOH} /g _{oil}]	33	33	43	50
Density [g/cm ³ , 40°C]	1.09	1.09	1.10	1.13
Viscosity [cSt, 40°C]	1121	2443	5197	9370
Moisture [wt%, KF]	17.0%	8.9%	11.7%	7.9%
Ash [wt%]	0.09%	0.10%	0.23%	0.59%
Filterable Solids [wt%]	0.08%	0.10%	1.23%	0.04%

Hydrothermal Processing of Algae

- 1. algae de-watered from 0.6 g/l to 100 g/L
- 2. hydrothermal liquefaction
- 3. solid precipitate separation for clean bio-oil production and phosphate capture
- 4. oil/water phase separate
- 5. oil hydrotreater to produce hydrocarbons—diesel/gasoline)
- 6. aqueous phase carbon is catalytically converted to fuel gas and nutrients recycled (N, K, some CO₂, etc)

Hydrothermal Liquefaction LEA or Whole Algae Biomass


Proudly Operated by Battelle Since 1965


Liquefaction

- Converts wet algae slurry
- Condensed water phase
- Gravity separable bio-oil
- Low oxygen content of bio-oil (5 to 10 wt%)

Upgrading via hydrotreatment

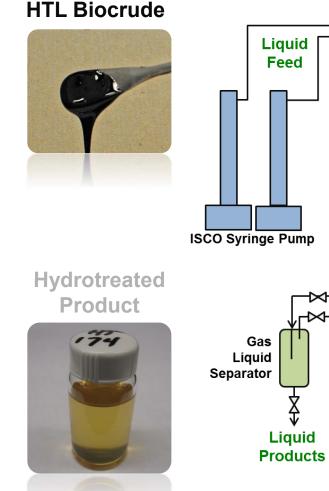
- Easy to hydrotreat, less H₂ required vs Fast Pyrolysis bio-oil
- Conventional hydrotreating catalyst
- Hydrotreated product = 90% volume of bio-oil
- Long chain hydrocarbons and small cyclics

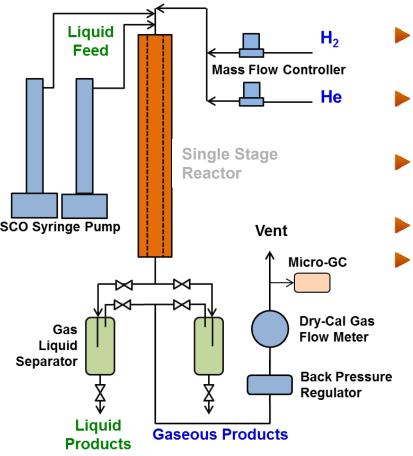
HTL of Cellana Algae Summary Nanno. Salina – low and high lipid versions

Parameter	Low lipid	High lipid			
Space Velocity, L/L/h	2.2	2.2			
Temperature, °C	350	348			
Mass Balance	102%	97%			
Total Carbon Balance	91%	96%			
Oil Yield, Mass Basis (BD)	65%	64%			
Oil Yield, Carbon Basis	81%	82%			
Bio-Oil Composition, Dry Weight Basis					
Carbon, Wt%	77.0%	77.6%			
Hydrogen, Wt%	10.4%	10.6%			
Oxygen, Wt%	8.0%	7.2%			
Nitrogen, Wt%	4.2%	4.0%			
Sulfur, Wt%	0.3%	0.3%			

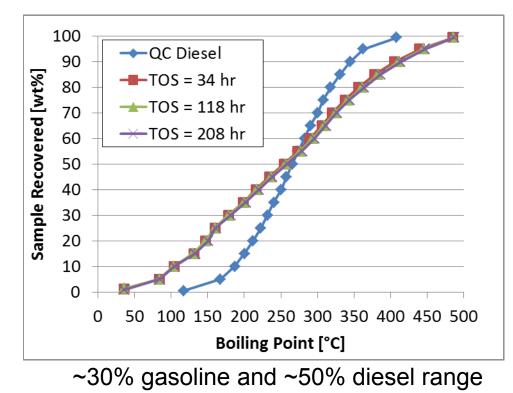
Density = 0.95 g/ml

Biomass


U.S. DEPARTMENT OF



Hydrotreating HTL Biocrude



- Conversion and upgrading of HTL biocrudes
- Hydrotreating for O, S and N removal
- Hydrocracking/isomerization and distillation to finished fuel
- Reactor: 1.3 cm ID, 63.5 cm
- Typical operating conditions:
 - T=400°C, P=1500 psig
 - LHSV=0.15-0.25 h⁻¹
 - H₂ consumption=0.03-0.04 g H₂/g_{dry feed}
 - Commercial HT catalyst (sulfided CoMo)

Hydrotreated Biocrude

SimDis (ASTM D2887) Results from Hydrotreated HTL Biocrude from Pine Feedstock (>200 hours on stream)

	Wood HTL Biocrude	Upgraded HT Product
LHSV (WHSV)		0.21 (0.32)
C [wt%]	78.6	88.80
H [wt%]	7.7	11.75
N [wt%]	0.16	<0.05
O [wt%]	13.5	0.86
S [wt%] ⁺	<0.02	7 ppm
Density* [g/cm ³]	1.102	0.897
Viscosity* [cSt]	2109	4.34
Water [wt%, KF]	6.4	<0.9
TAN [mg KOH/g]	42.1	<0.01
H/C Atomic Ratio	1.2	1.58

⁺ASTM D4239 Biocrude, ASTM D5453 HT Product *Biocrude at 40 C and HT Product at 20 C

Characterization of Biocrude and Product

NATIONAL LABORATORY
Proudly Operated by Battelle Since 1965

Pacific Northwest

	Algae HTL Biocrude Feed	61573-62-2 TOS = 22.6 hr	61573-62-5 TOS = 58.6 hr	61573-62-8 TOS = 95.4 hr
LHSV (WHSV)			0.25 (0.34)	
Density (40°C), g/cm ₃	0.987	0.777	0.781	0.784
Viscosity (40°C), cSt	243.8	1.3	1.4	1.4
C, wt% (Dry Basis)	80.4	86.5	86.6	87.0
H, wt% (Dry Basis)	9.4	15.1	15.0	14.9
N, wt% (Dry Basis)	4.9	<0.05	<0.05	<0.05
O, wt% (Dry Basis)	2.9	0.7	1.0	0.9
S, ppm (ASTM D5453)		34	24	15
H/C Atomic Ratio (Dry Basis)	1.4	2.1	2.1	2.1

Fractional Distillation Results and Yields

All TOS samples from algae HTL hydrotreating test were composited for lab scale fractional distillation.

Batch Distillation Temperature Range, °C	Yield, wt%	Fraction	Density*, g/cc	Viscosity*, cSt		
20-150	23.98	naptha/gasoline	0.7083	0.3524		
150-265	29.77	jet	0.8046	1.6013		
150-350**	68.22	jet+diesel	0.8215	3.3727		
265-350	38.45	diesel	0.8337	6.5113		
>350	7.78	bottoms/wax	0.8874	28.978		
* fuel cut data at 20°C, bottoms/wax data at 40°C **jet and diesel fractions recombined after distillation						

**The jet and diesel fractions were combined to produce a conventional mid-distillate for evaluation as a drop-in commercial diesel product, the jet+diesel sample with boiling point range of 150-350 C.

Analytical Data for Distillate Fractions

Hydrotreated Algae HTL Biocrude						
Off-site Analytical	С	Н	N	0	TAN	KF
61573-62-D1 Naphtha	83.23	13.75	<0.05	0.87	< 0.01	<0.5
Duplicate	83.59	14.54	<0.05	0.73	< 0.01	<0.5
61573-62-D2 Jet	86.05	14.14	0.1	0.55	< 0.01	<0.5
Duplicate	86.33	13.2	0.12	0.64	< 0.01	<0.5
61573-62-D3 Diesel	85.58	13.77	0.14	0.96	< 0.01	<0.5
Duplicate	85.21	13.89	0.15	0.72	< 0.01	<0.5
61573-62-D4 Bottoms	87.44	12.78	0.3	0.84	< 0.01	<0.5
Duplicate	87.5	12.82	0.31	1.01	< 0.01	<0.5

Fuel Property Characterization Data

Proudly Operated by Battelle Since 1965

Hydrotreated Algae HTL Biocrude Sample ID#	Fraction	Sulfur ASTM D5453 (ppm)	Flash Point (micro- cup) °C	Cloud Pt ASTM D5773 (°C)	Pour Pt ASTM D5949 (°C)	Freezing Pt ASTM D5972 (°C)	Cetane
61573-62-D1	naphtha/gasoline	18.1					
61573-62-D2	jet	12.6	49.5	-41.6	-48	-36.9	
61573-62-D3	diesel	9.4		3.2	3	4.2	58.7
61573-62-D2+D3	jet + diesel	7.8	TBD	-8	-9	-7.5	50.8
61573-62-D4	bottoms/wax*	NA	NA	NA	NA	NA	NA

*The bottoms/wax are semi-solid at room temperature.

Catalytic Hydrothermal Gasification

Proudly Operated by Battelle Since 1965

Description of CHG

- "Sister technology" to Hydrothermal Liquefaction (HTL)
- Can be used on any organic rich aqueous stream
- Produces methane gas rather than oil (catalytic action)
- Compact means to do "digestion" providing a fuel gas (CH₄/CO₂) without residual sludge
- Provides potential to recycle nutrients in biomass

Scale-Up and Technology Transfer

Proudly Operated by Battelle Since 1965

- Updated comparison between HTL and pyrolysis (feedstock
 → upgraded fuel) shows comparable economics
- FLC Award for Excellence in Technology Transfer (2015)
- Engineering challenges include slurry pumping, efficient separations, and heat integration
- Third party assessment by the Harris Group <u>http://www.nrel.gov/docs/</u> <u>fy14osti/60462.pdf</u>

Jim Oyler with the 1000 L/day (20 wt% BDAF) continuous HTL/CHG system for algal feedstock; NAABB-Reliance-PNNL-Genifuel Hydrothermal System 2014. Genifuel is a PNNL licensee.

Scaled-up Catalytic Hydrotreater

- 9-zone fixedbed catalytic hydrotreater (19 L)
- Atmospheric distilling column for fuel fraction collection

Current and Future Work

- Algal biomass: all types
- Wet waste: grape pomace, beet tailings, waste-water treatment sludge
- Design and build 12 L/h engineering scale reactor system skid fabrication underway
 - Delivery expected May 2016
 - Operational testing expected August 2016
- Enhanced recovery of organics from aqueous phase – TEA indicates that process economics are most sensitive to this variable
- Longer-term demonstrations of HT catalyst activity and stability (>200 hr)
- Optimize fuel finishing to meet refinery insertion points

- PNNL has demonstrated a continuous HTL process that converts a biomass slurry into a gravity-separable biocrude that can be upgraded by single-step hydrotreatment to liquid fuel-range hydrocarbons
- Biocrude can be produced from many different feeds including lignocellulosic, micro- and macro-algal biomass, wet food wastes, and wastewater treatment sludges
- This process has commercialization potential

Much of the work summarized here was supported by U.S. Department of Energy's Bioenergy Technologies Office (BETO).

PNNL Team members are many, including

Andy Schmidt, Rich Hallen, Dan Anderson, Justin Billing, Karl Albrecht, and John Holladay.

The dedicated support from Todd Hart and Gary Maupin on feed preparation, HTL system design, and operations, including CHG tests, has been invaluable.

Hydrotreating operations include Huamin Wang, Daniel Santosa, Gary Neuenschwander, LJ Rotness, and Mariefel Olarte.

Teresa Lemmon, Marie Swita, and Beth Hofstad have provided outstanding sample analysis.

Technoeconomic assessments and life-cycle analysis is lead by Sue Jones with support from Yunhua Zhu, Lesley Snowden-Swan and Rick Skaggs' team.

Many thanks to our commercial partners and collaborators!

Summary

The creation of a robust, next -generation domestic bioenergy industry is one of the important pathways for providing Americans with sustainable, renewable energy alternatives. Through research, development, and commercialization to produce renewable fuels and products sustainably and affordably, we can provide homegrown alternatives for the transportation, energy, and bioproducts sectors.

Email eere_bioenergy@ee.doe.gov

Please include "R&D 100 Webinar" in the Subject Line

Thank you!

