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Interband Tunnel Junctions 

 

• injection of holes into p- type 

material 

 

• Applications: LEDs, Lasers 

 

• Recombination of electrons and 

holes by tunneling 

 

• Applications: Solar cells 

Ec - 

Ev 

+ 

Ef, p Ef, n 

TJ in reverse bias  

Ec + 

Ev 

- 

Ef, p 
Ef, n 

TJ in forward bias  

Electron  hole 

carrier conversion  

2 



rajan@ece.osu.edu 

LEDs with tunnel junctions 
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Outline 

1. Motivation for tunnel junctions 

• Cascaded multi-active region LEDs 

• High current density emitters/VCSELS 

• Reverse polarity designs 

 

2. Current status of  tunneling based  LEDs 

• Design of tunnel junctions 

• MOCVD-based tunnel junctions 

• High current density/laser structures 

 

3. Challenges and research directions 
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Motivation 1: Cascaded LEDs for Efficiency Droop 
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Efficiency droop: Main issue in LED lighting today 

• Carrier overflow 

• Auger recombination 

 

Cascaded LEDs 

• Low current density with multiple active regions 

• Each e-h pair injected creates multiple photons 

• Also important for longer wavelenths 

Reduce chip area 

Low current, high power 

Reduce LED cost 

Akyol et al, Appl. Phys. Lett. 103 , 081107 (2013) 
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Modeling of multi-junction LEDs 
Akyol et al, Appl. Phys. Lett. 103 , 081107 (2013) 
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Equivalent current = N*I 

 

High equivalent current 

with high efficiency 
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with high efficiency 

Input power 

- Lower current density 

at higher voltage 

- High efficiency at high 

power 
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High equivalent current 

with high efficiency 

Input power 

- Lower current density 

at higher voltage 

- High efficiency at high 

power 

Cascaded LEDs 

Objective: high power density 

• Use high voltage instead of 

high current 

• Low current density 

circumvents efficiency 

droop 
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Scaling Laws for Cascaded LEDs 
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• Assume identical active regions with series resistance  Rs 

• Joule heating decreases linearly with ‘N’. 

 

• Higher wall plug efficiency (WPE) 

 

• Better thermal management 

Identical power density Cascaded/  

Conventional 

Forward bias N 

Driven Current 1/N 

Series resistance N 

Joule Heating (I2  x Rs) 1/N 

Area, cost (post epitaxy) 1/N 
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Motivation 2: High Current Density – Lasers 
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• VCSELS need a transparent top region 

• High power density - high current density  

• Tunnel junctions can enable very low resistance transparent contacts 

 

Tunnel junctions could enable high current density laser based lighting 
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Outline 
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Polarization engineering for tunnel junctions 

Standard p+/n+ TJ 

• Large Eg  wide depletion region 

• Doping limitations 

• Large energy barrier for tunneling 

Low tunneling current density 
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Polarization engineering for tunnel junctions 
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Standard p+/n+ TJ 

• Large Eg  wide depletion region 

• Doping limitations 

• Large energy barrier for tunneling 

Low tunneling current density 

Polarization TJ 

• High density polarization sheet charge 

 depletion width greatly reduced. 

• Tunnel barrier reduced due to InGaN. 
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Low resistance GaN/InGaN/GaN TJs (MBE, OSU) 
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GaN/InGaN/GaN tunnel junctions 

All Plasma-assisted MBE 

• Voltage drop < 0.1 V 

• Resistance ~ 0.1 mOhm-cm2 

Krishnamoorthy et al, Appl. Phys. Lett. 97, 203502 (2010) 
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Overview of the tunnel junction technology 
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Resistance down to 10-5 Ohm cm2 

achieved for GaN tunnel junctions. 

GdN/GaN, Nano Lett., 13, 2570 (2013) 

InGaN/GaN, APL 102, 113503 (2013) 

PN GaN (2015) 

MBE-based approaches already enable very low voltage drop/resistance 

tunnel junctions 
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20 mA 

• Only 16% area covered with 

metal electrode (could be 

reduced further) 

• Excellent current spreading 

due to top tunnel junction 

• No flip-chip or ITO needed 

Higher output power 
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TJ 

p-i-n 

diode 

• CW I-V at RT  

• 20 A/cm2 at 3.3 V 

• Record GaN PN current density up to 150 

kA/cm2 

• Record tunneling resistance: 1 x  10−5 Ω.cm2 at 

150 kA/cm2 

n-p-n Diode epitaxial design 

Homojunction Tunnel Junctions on PN junction 

• NH3 MBE homojunctions (EPFL - 

Grandjean) 

• NH3 MBE/MOCVD hybrid TJ for 

VCSEL (UCSB) 
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Tunnel junction based laser (UCSB) 

MBE/MOCVD hybrid tunnel junction 

Improved performance relative to ITO 

• Lower threshold current (3.5 vs 8 kA/cm2) 

• Higher efficiency (0.26% vs 0.062%) 
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MOCVD TJ development (Meijo/NCKU/Epistar) 

Takeuchi/Akasaki groups/Meijo 

University 

 Phys. Status Solidi B 252, No. 5 

(2015) 

• Low resistance tunnel junctions demonstrated using all-MOCVD 

GaN/InGaN/GaN approach 

• Proof-of concept cascaded LEDs demonstrated 

21 

SYMBOLS 

OPEN: MBE 

CLOSED: MOCVD 

NCKU, Taiwan and Epistar 

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 51, NO. 8, AUGUST 2015  
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Research needs/directions 
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1. Design: InGaN-based tunnel junctions/homojunctions 

2. Absorption in tunnel junctions 

3. Activation of buried p-type regions 

4. Defect control at tunnel junctions (due to doping and InGaN) 

5. Inverted polarity structures (p-down) 
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Tunnel junctions can enable innovative solutions to efficiency droop problem 

 

They are ready to be applied today! 
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