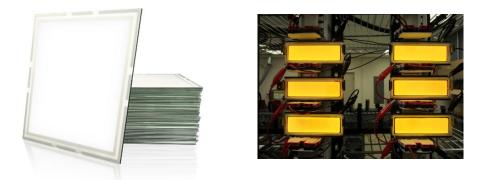
OLED Lighting Manufacturing Challenges John Hamer, OLEDWorks

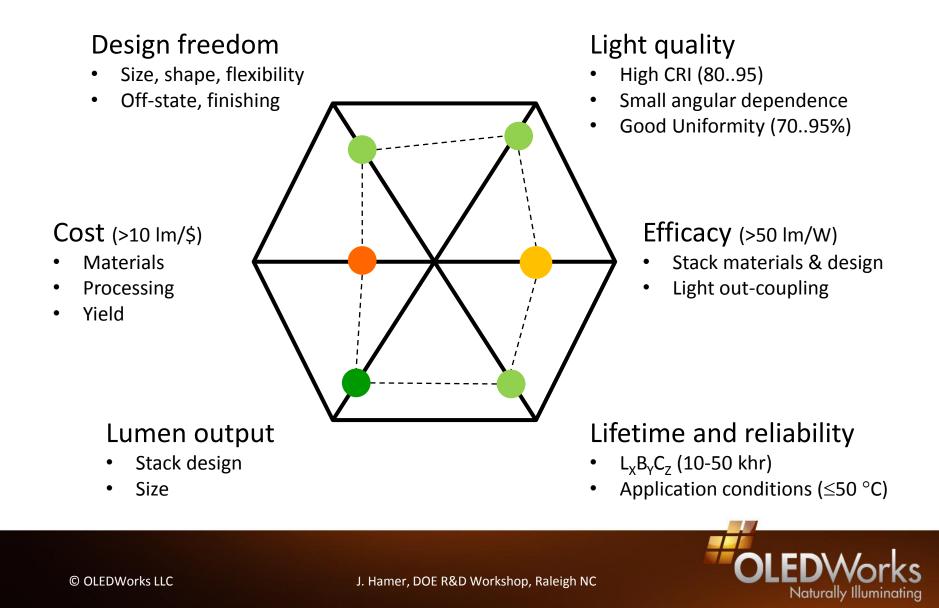
OLEDWorks.com


Outline

- OLEDWorks Introduction
- Status of OLED Performance for General Lighting
- Status of OLED Lighting Manufacturing
- Flexible OLED Lighting Panels
- Conclusions and Outlook

OLEDWorks introduction

- OLEDWorks LLC is OLED lighting manufacturer based in Rochester, NY
- On October 31st 2015, completed acquisition of Philips OLED lighting assets which are now its fully owned subsidiary, OLEDWorks GmbH
- Focus on manufacturing and R&D for OLED lighting panels
- DoE OLED test site for industry evaluations
- Target markets include all major professional and consumer applications



J. Hamer, DOE R&D Workshop, Raleigh NC

Status of OLED Performance for General Lighting

Reference device – Current White Lighting Panels

Al cathode		
R+G unit		
CGL		
B unit		
CGL		
R+G unit		
CGL		
R+G unit		
CGL		
B unit		
CGL		
R+G unit		
ITO anode		
Display glass		
Scattering foil		

Parameter	Value	Target
Voltage (V)	20	\checkmark
Power (W)	7.4	\checkmark
Luminous flux (lm)	300	\rightarrow
Efficacy (Im/W)	40-50	\uparrow
L70 (hr)	>10,000	\uparrow
Luminance (cd/m ²)	8,300	\rightarrow
CRI	80	\uparrow

Status of OLED Lighting Manufacturing

- In the US, OLEDWorks is only lighting panel manufacturer.
- OLED lighting manufacturers outside US
 - LG Display, Korea White lighting panels
 - Kaneka, Japan White and colors; small production
 - Konica Minolta, Japan Flex R2R production and color changing panels
 - First O-Lite, China White panels
 - Black Body, France Custom installations
 - Osram, Germany Automotive

- 1. Internal Light Extraction Substrates
- 2. Thin Film Encapsulation
- 3. Control of OLED Deposition

- 1. Increase Efficacy while maintaining lifetime, reliability, high yield, and without significantly increasing cost
 - We are working with several vendors of Internal Light Extraction substrates
 - We have a DOE project to evaluate and select an internal light extraction substrate, and to deliver 80 lm/W panels to Acuity for a luminaire
 - See our poster at tonight's poster session.
 - The good news is that the efficacy goals appear to be achievable.
 - Problems/concerns that are encountered with internal light extraction:
 - Increased occurrence-rate of shorting during LT70 lifetime
 - Today internal light extraction processes add significant cost
 - Concern about uniformity and particles if extraction layers need patterning

- 1. Increase Efficacy while maintaining lifetime, reliability, high yield, and without significantly increasing cost
 - We are working with several vendors of Internal Light Extraction substrates
 - We have a DOE project to evaluate and select an internal light extraction substrate, and to deliver 80 lm/W panels to Acuity for a luminaire
 - See our poster at tonight's poster session.
 - The good news is that the efficacy goals appear to be achievable.
 - Problems/concerns that are encountered with internal light extraction:
 - Increased occurrence-rate of shorting during LT70 lifetime
 - Today internal light extraction processes add significant cost
 - Concern about uniformity and particles if extraction layers need patterning

Continue support for Internal Light Extraction Substrate work.

- 2. Thin-film Encapsulation suitable for Flexible OLEDs
 - Existing TFE processes work for rigid substrates
 - Alternative processes are required which have:
 - Lower capital cost for equipment
 - Lower operating cost for equipment
 - Alternative processes are required for flexible/bendable substrates

- 2. Thin-film Encapsulation suitable for Flexible OLEDs
 - Existing TFE processes work for rigid substrates
 - Alternative processes are required which have:
 - Lower capital cost for equipment
 - Lower operating cost for equipment
 - Alternative processes are required for flexible/bendable substrates
- Continue support for Thin Encapsulation, for Rigid and Flexible/Bendable substrates

- **3**. OLED Deposition for tighter control of color point
 - Sensing and control of vapor deposition rates (for vacuum thermal evaporation systems)
 - Less noise than current QCM system
 - Longer lifetime than current QCM systems
 - While market growing, we need the ability to change formulations and products frequently and rapidly at lower cost
 - This requires machines to change operating points quickly.

- **3**. OLED Deposition for tighter control of color point
 - Sensing and control of vapor deposition rates (for vacuum thermal evaporation systems)
 - Less noise than current QCM system
 - Longer lifetime than current QCM systems
 - While market growing, we need the ability to change formulations and products frequently and rapidly at lower cost
 - This requires machines to change operating points quickly.

 Continue support for Manufacturing – Vapor Deposition Rate Sensing

Flexible OLED Panels

Thin Flexible/Bendable OLED Lighting Panels

- LG has announced flexible panels on plastic base
- Konica Minolta has built a large machine for making OLEDs on plastic R2R
- We are working with Corning to develop technology for products using Willow[®] glass
- Challenges
 - Bonding flex substrates onto carriers, and de-bonding from carriers after deposition – with no effect of substrate and OLED processing steps
 - Improve robustness of final panels to prevent breakage in customers hands and during installation into fixtures
 - Requires robust flexible encapsulation and low-cost flexible electrical connections

Flexible OLED Panels

Thin Flexible/Bendable OLED Lighting Panels

- LG has announced flexible panels on plastic base
- Konica Minolta has built a large machine for making OLEDs on plastic R2R
- We are working with Corning to develop technology for products using Willow[®] glass
- Challenges
 - Bonding flex substrates onto carriers, and de-bonding from carriers after deposition – with no effect of substrate and OLED processing steps
 - Improve robustness of final panels to prevent breakage in customers hands and during installation into fixtures
 - Requires robust flexible encapsulation and low-cost flexible electrical connections
- Continue support for Flexible/Bendable process work
- Continue support for Flexible/Bendable luminaire product

Conclusion and Outlook

- OLED lighting is ready for wide application efficacy, lifetime, quality
- Overcoming manufacturing challenges are critical to the costreductions and the new products necessary for market growth
- Flexible lighting products are necessary for development of exciting new OLED products. This need process development and luminaire development

