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OLEDs: Major Remaining Challenges 
for Lighting 

• Blue Lifetime 

• Getting the Light Out 

• Cost & Yield  

– Patterning & Deposition 

– Throughput 
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• Air modes: EQE first  increases, then decreases with ETL 
thickness  

• Waveguide modes: Only one waveguide mode TE0 due to thin 
ETL (<30nm). TM0 appears when >50nm. 

• Surface plasmon polariton modes: Reduced with ETL thickness 
• Both waveguide and SPP modes are quantized 
• Total energy is the integral of Power Intensity X cos(θ), so SPP 

not as small as it looks 

Where do all the photons go? 
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• Good solutions 

 Inexpensive 

 Viewing angle independent 

 Independent of OLED structure 

• Among those things that have been tried 

 Optical gratings or photonic crystals1 

 Corrugations or grids embedded in OLED2 

 Nano-scale scattering centers3 

 Dipole orientation management 
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1Y .R. Do, et al, Adv. Mater. 15, 1214 (2003). 
2Y. Sun and S.R. Forrest, Nat Phot. 2, 483 (2008).  
3Chang, H.-W. et al. J. Appl. Phys. 113, - (2013). 
 

Getting all the photons out 



Substrate Modes: ~2X Improvement 

Gu, et al., Opt. Lett., 22, 396 (1997) 

ηext~40% 

Pyrimidal structures on substrate 

Microlens arrays 
 Polymer hemispheres 
 Much smaller than pixel 
  

Möller, S. & Forrest, S. R. 2001. J. Appl. Phys., 91, 3324. 
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Metal electrode pixel 

Organics 

Low-index grid 

ITO 

Glass substrate 

Side view 

wLIG 

worg 

Waveguide Modes 
Embedded Low Index Grid 

ηext~60% (incl. substrate modes) 

Sun, Y. & Forrest, S. R. 2008. Nature Photon., 2, 483. 
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2mm 

The Real Things 

• OLED >> Grid size >> Wavelength 
• Embedded into OLED structure 
• May partially decouple waveguide mode from SPPs 
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Device Performance Using Embedded Grids + Microlens 

Device 1: Conventional 
Device 2: LIG only 
Device 3: Microlenses only 
Device 4: LIG + Microlenses 

Method is Wavelength 
 Independent 

Sun, Y. & Forrest, S. R. 2008. Nature Photon., 2, 483. 



A better approach: Sub-Anode Grid 

 A multi-wavelength scale dielectric grid 
between glass and transparent anode 
(sub-anode grid) 

 The grid is out of the OLED active region 

 Waveguided light is scattered into 
substrate and air modes 
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Cathode 

 
nglass=1.5 

nhost 

norg=1.7, nITO=1.8 

ngrid ngrid 
waveguided 
power + 
dissipation 

Collect substrate 
mode power 

Qu,Slootsky, Forrest, Nature Photonics (2015) 



Emission fields 
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WITH GRID 

WITHOUT GRID 

VERTICAL  
DIPOLE 

HORIZONTAL  
DIPOLE 

Mostly in-plane 
(Waveguided) 

Mostly out-of-plane 
(Glass + air) 



Effects of Refractive Index 
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160nm            Host 

120nm org 
70nm ITO 

 
 

Grid 

3µm 1µm 

Simulation results 
• Larger Refractive index difference 

gives higher enhancement 
•  This is not a cavity effect 
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Little or no impact on emission characteristics of the OLED 



Optical Power Distribution 

Thick-ETL organic structure:  

340nm grid/70nm ITO/2nm MoO3/40nm 
TcTa/15nm CBP: Ir(ppy)3/10nm TPBi/230nm 
Bphen:Li/Al 

 

 

2nm MoO3/40nm CBP/15nm CBP:Ir(ppy)3/xnm 
TPBi/1nm LiF/Al 



Pt(dbq)(acac) 

Isotropic 
Orientation 

Horizontal 
Orientation 

Manipulating Molecular Orientation 

Ir(ppy)3 



Example results 
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Approach largely impractical 
• Added constraints on molecular design 
• Added constraints on process (growth) conditions: may not align as expected 
• Added constraints on device architecture 
• Alignment is never “perfect”: only modest improvements 



The Last Frontier: Surface Plasmon Polariton (SPP) Modes 

ηext > 80% (incl. substrate + waveguide modes) 

• Waveguided light excites lossy SPPs in metal cathode 
• Major loss channel partially eliminated by rapid outcoupling of waveguide modes 
• Most difficult to eliminate cost-effectively without impacting device structure 
 
 



One possible solution: Surface corrugations 

• Waveguide thickness varies due
to the corrugation.

• As the thickness changes, the
mode distribution changes.

• When the waveguided power
travels from thin to thick areas,
the k vector needs to change
direction to keep “being
trapped”. Otherwise, the light is
extracted.
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W. H. Koo, et al, Nat. Photonics 2010, 4, 222. 

A possible approach: Surface buckling? 

FFT 

Al on resin 



• Simple design that does not interfere with OLED structure 
• Only substrate processing 
• Extracts all wavelengths approximately equally 
• 80-90% extraction within reach! 
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How Much Light Can We Realistically Hope to Extract? 



Conclusions 

• Optimal criteria for outcoupling solutions 

– Low cost 

– Angle and wavelength independent 

– Minimal impact on established OLED and materials designs 

• Sub-anode grid outcouples all waveguide modes 

• No impact on electrical characteristics  

• No significant optical effect 

• No active dead zone 

• SPP Modes are the final frontier 

– 80% outcoupling may be possible if appropriate techniques 
are employed 
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