Testing of OLED Devices in Elevated Ambient Conditions

Presentation to DOE SSL R&D Workshop
February 3, 2016

Bobby Yaga, Cortina Johnson, Karmann Mills, and Lynn Davis

Contact Info: ldamis@rti.org
Traditional LED Devices

- Due to low failure rates, the “Hammer Test” was developed as a highly accelerated stress test for LED-luminaires. Testing regiment was aggressive and consisted of high temperature bakes, temperature shock, and temperature-humidity testing.

- General finding was that LED failures were rare and driver electronics were often the limiting factor.

Other Testing on Traditional LED Devices

- CALiPER Testing on lumen and chromaticity maintenance for PAR38 and 60 W equivalent lamps. *(see DOE website)*
 - Continuous run @ 45°C ambient
 - Parts from ~2011 - 2013 timeframe

- At 45°C ambient, there has been findings of lumen depreciation and chromaticity shifts in some parts as early as 4,800 hr.

- Elevated temperature life test in Energy Star requires testing at 45°C ambient testing.

Mineral Lumen Depreciation in most LED PAR38 lamps.
Testing on OLEDs

- Analogous test results are not publicly known for OLEDs, but OLEDs can benefit from the lesson learned of traditional LEDs.

- Commonly used “accelerated testing” is room temperature operation at different currents.

- General perception is that OLEDs are less robust than conventional inorganic LEDs and will fail sooner.
 - Initial “benchmark” testing does not have to be as strenuous

- There have also been some reports of degradation in the off state during storage.

From: http://ssl.energy.gov
<table>
<thead>
<tr>
<th>FULL OLED LUMINAIRE TEST</th>
<th>OLED Panel TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Commercial 5-Panel luminaires using manufacturer’s supplied driver (7.2 W, 150 mA).</td>
<td>- Operate new commercial OLED panels in more stressful environments.</td>
</tr>
</tbody>
</table>
| - Test protocol – elevated ambient of 45°C ambient with power applied. | - 45°C bake at 200 mA
 - 75°C bake at 150 mA
 - 75°C and 75% ambient, 150 mA |
| - *Operational Life Test.* | - All tests are operational life test. |
| - 250 hour test increments. | - Full photometry after each 250 hr test increment. Measurements at room temperature. |
| - Full photometry after each test. Measurements @ room temp. | |
| - Goniophotometry on different samples at PNNL. | |

Tests are just starting. More results to come.
OLED Panel Characteristics

- Hybrid triple stack with fluorescent blue emitters and phosphorescent green & red.
- Initial Flux: 88 Lumens
- Size: 100 x 100 mm²
- Current: 150 mA per panel
- Luminous Efficacy: 69 LPW
- CCT: 2976 K
- CRI: 88.1
- R9: 27.1
- 5 100x100 mm² panels electrically connected in parallel
- Initial Flux: 402 Lumens
- Current: 150 mA per panel
- Luminous Efficacy of System: 55 LPW
- CCT: 2995 K
- CRI: 87.4
- R9: 26.3
- TM-30 R_f: 86
- TM-30 R_g: 96
- Assuming exponential behavior, decay rate constant is 2.47×10^{-5}. **NOTE:** This is not TM-20 calculation.
- About 2x highest LM-80 values at 55°C for conventional LEDs.
- After 1000 hr. in 45°C elevated ambient, $\Delta u'v' = 0.0014$ (one step)
- Chromaticity shift caused by a drop of green and red emissions.
Conclusions

- OLED technologies can benefit from the lessons learned with inorganic LED lighting.

- Stress testing on a OLED luminaire product and OLED panels has just begun and results are limited. Relatively mild temperatures (e.g., 45°C) have been used to date. Findings are instructive, but no definitive conclusions can be drawn yet.

- Measured commercial OLED luminaire and individual panels had excellent chromaticity properties with high color fidelity (R_f) and color gamut (R_g) indices.

- Observed color shift is in the blue direction due to reduction of green and red-orange emissions. Blue emissions stayed relatively constant.

- Luminous efficacy at the luminaire level is ~55 LPW and decay rate constant (α) is > 2.4x10^{-5} in limited measurements in 45°C ambient.
Acknowledgements

- This material is based upon work supported by the Department of Energy under Award Number DE-EE0005124.

- Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.