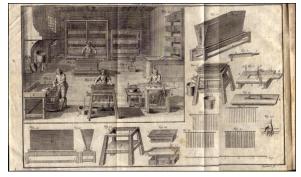
Next Generation Luminaire Manufacturing

Chris Bohler, PhD DOE R&D Workshop Feb 4, 2016

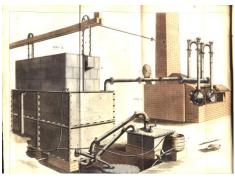
ss Worldwide

Powering Business Worldwide

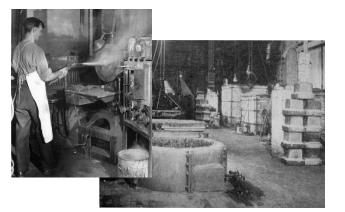
© 2015 Eaton, All Rights Reserved


www.eaton.com

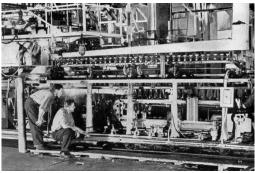
Topics of Discussion (Food for thought ...)


- History of Lighting Manufacturing
- Design for Mfg: Anatomy of a Luminaire
- LED Lighting Manufacturing Process
- ➢ Discrete → Integrated Manufacturing Mindset
- Potential Savings: Minimizing Redundancy
- Case Study: Thick-Film Integrated Manufacturing
- > Additive Manufacturing: Print on Demand
- Summary: DOE Funding Recommendations

History of Lighting Manufacturing


1000's: Candle Manufacturing

Ca 1816: Coal Gas Producing Station



Mid-1800's: Clean glass, the start of Daylight Harvesting

Early 1900's: Filament-making Plant for electric lighting

History of Light & Lighting Prof. D. DiLaura/Used with Permission

Mid-1900's: Incandescent Lamp Mfg

1960's: Fluorescent Lamp Mfg

LFL Manufacturing Image Provided by GE

Design for Manufacturing: Anatomy of a Luminaire

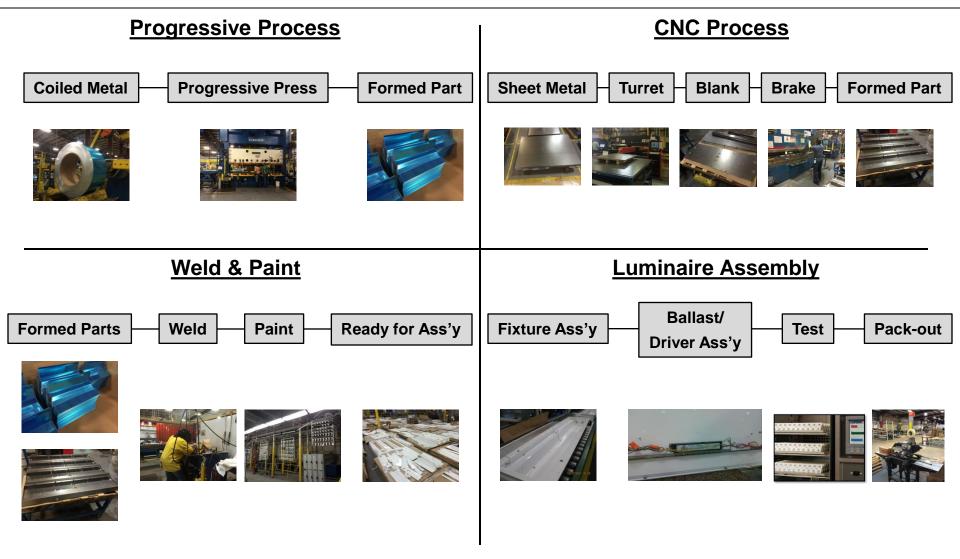
© 2015 Eaton, All Rights Reserved

Luminaire Manufacturing Overview

Fabrication

Paint Line

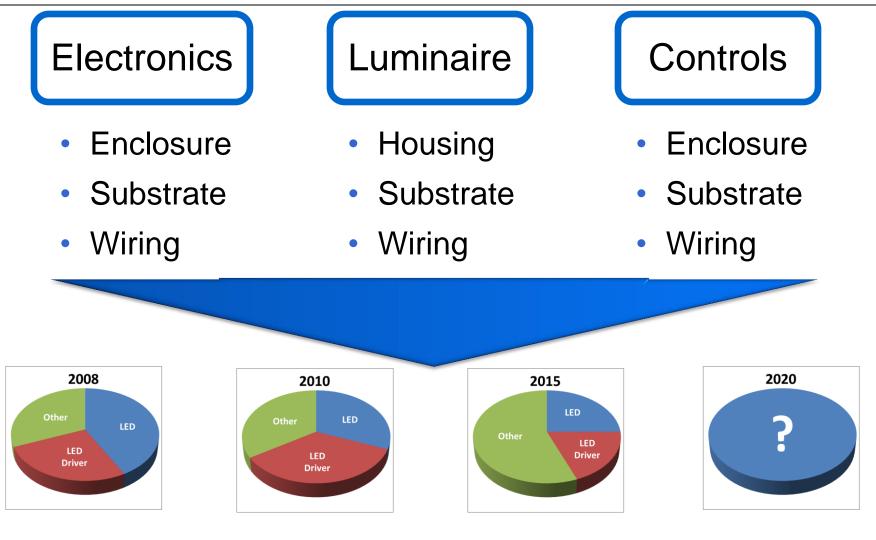
Assembly


- Raw coiled or sheet metal
- CNC turret presses
- CNC Press brakes
- Manual Press brakes
- Progressive presses

- Paint capability
 - Matte white
 - High Reflectance white
 - Color booth
- Variable Speed
- Stainless Steel Polish

- Cell assembly standard
- > Typically reconfigurable
- In-Line testing
 - Photometrics
 - Electrical characterization

Luminaire Manufacturing Processes



Discrete → Integrated Mfg Mindset

Music **Digital Music** OMPAC 4 - - - 0 \succ Mechanical \rightarrow Word Processing Typewriter / Print Electrical WE Analog \rightarrow Digital \geq Hardware \rightarrow \geq Software Camera / Film **Mobile Device** 36 100

Potential Savings: Minimizing Redundancy

Case Study: Thick-Film Integrated Mfg

Thick-film additive manufacturing process to print circuits on luminaires

- Thermal efficiency
- Energy efficiency
- Less aluminum = Lower cost
- Flexible manufacturing / supply chain... Print on demand
- Fewer components, less assembly

Mount LEDs and electronics on housings



(DOE Proj. NO. DE-EE0006260)

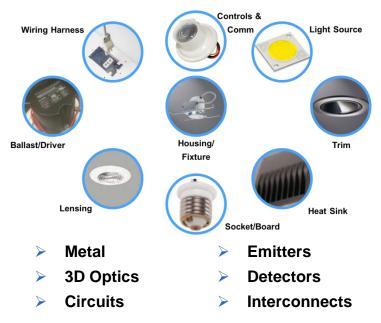
OVH HID

Thick-Film LED

- > 90% size reduction
- 60% energy savings
- >20% cost out

Additive Mfg: Print on Demand

Subtractive Process


7.	11
	1
11	

INNER LAYER IMAGE INNER LAYER ETCH AOI OXIDE TREATMENT LAMINATION DRILLING
DIRECT METALLIZATION OUTER LAYER IMAGE PLATING STRIP/OUTER ETCH SOLDER MASK
FINAL FINISH ROUTING ELECTRICAL TESTING FINAL INSPECTION

Typical PCB Mfg "Subtractive" Process

Additive Processes

Summary: DOE Funding Recommendations

- Core LED
- LED Driver Electronics
- LED System Manufacturing Processes
 - Cost-out: Integration ... minimize redundancy
 - > Additive Mfg: Only add what is needed
 - Design for Mfg: Interconnectivity
- Leverage the benefit of the SSL source
 - Digitization
 - Control
 - Communication

