(U) SRTE Science Experiment Support at TJNAF

H. Lee Nigg, PhD (SRNL)
Ashley D. Elizondo (SRNL)
Joseph D. Novajosky (TP)
David Meekins, PhD (TJNAF)
Tritium Focus Group (LANL)
Nov 3-5, 2015

Savannah River Tritium Enterprise – Thomas Jefferson National Accelerator Facility
SRTE - TJNAF

SRTE
• SRNL and Tritium Programs Partnership
 Nuclear Weapon Gas Boosting Systems
 R&D – Production - Tritium Supply

TJNAF (also called Jefferson Lab or JLab)
• DOE Office of Science – Fundamental Physics Experiments
 Continuous Electron Beam Accelerator
 6 GeV (12 GeV upgrade) - User Community - 4 Halls
JLab Experiment:
Deep Inelastic Scattering – protium, deuterium, tritium, helium-3
- ratio of neutron to proton inelastic structure functions
- ratio of down to up quark distributions
 - medium and large Bjorken x
- contribution to the EMC effect

Purpose: high energy hadron collider and neutrino oscillation data interpretation
Basic Experiment Layout

Five Target Cells Total:
- dummy
- protium, deuterium, tritium
- helium-3

Stacked Under Cryo System

Cells: Aluminum 7075-T651
Machined from Casting
Cu Conflat
Swagelok valve
Entrance Window 0.01” thin
Exit ~0.016” (curve), 0.011” (tip)
Experiment/Target Operation

Key Parameters:
- 15 microA electron beam
- 42 days
- 200 psia (tritium)
- ~1099 Ci
- 99.5%+ purity
- 35 K pre-beam

Modeling/Testing:
- temperature
- pressure
- hydrogen embrittlement
- permeation
- activation products
- beam/particle mapping

burst test – 3000 psi

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>$T_{1/2}$ (days)</th>
<th>A_{1day} (Bq)</th>
<th>A_{1month} (Bq)</th>
<th>A_{1year} (Bq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22Na</td>
<td>950</td>
<td>6.02×10^5</td>
<td>5.89×10^5</td>
<td>4.61×10^5</td>
</tr>
<tr>
<td>24Na</td>
<td>0.625</td>
<td>2.15×10^5</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>60Zn</td>
<td>244.3</td>
<td>1.01×10^5</td>
<td>9.32×10^3</td>
<td>3.6×10^3</td>
</tr>
<tr>
<td>54Cr</td>
<td>27.7</td>
<td>6×10^3</td>
<td>2.9×10^3</td>
<td>65.7</td>
</tr>
<tr>
<td>7Be</td>
<td>53.1</td>
<td>2.38×10^4</td>
<td>1.62×10^4</td>
<td>2.08×10^4</td>
</tr>
<tr>
<td>57Co</td>
<td>271.8</td>
<td>1.73×10^5</td>
<td>1.61×10^5</td>
<td>6.86×10^5</td>
</tr>
<tr>
<td>58Co</td>
<td>70.9</td>
<td>3.7×10^5</td>
<td>2.78×10^5</td>
<td>1.05×10^6</td>
</tr>
</tbody>
</table>
Experiment Configuration

- Stack assembly
- Scattering chamber
- Cherenkov Detector
Tritium Collaboration

- Tritium Target Cell
 1) Production
 2) Material Compatibility
- Tritium Safety Analysis, Protocols and Reviews

Hall A
100 ft diameter
3 stories high
Tritium Target Cell – 1) Production

A) load 99.5%+ T2
- 200 psia
- 1099 Ci (Type A Shipping Package)
- verification:
 NFW and PVT
 HRMS
B) burst test data review and approval
C) valve type review and approval
D) activation product consideration (Na-22)

Loaded and Shipped September 2016

Collaborative Installation October 2016

Beam Operation Over 10-12 Months

Decay for ~ 2 Months

Returned for Unload
Tritium Target Cell – 2) Material Compatibility

Uncertainty:
- although low permeability in Al(O)
- and low solubility in Al
- and low temperature (< 100 K)
 - beam produces reactive environment
 - tritium exposure for 6 months

INTEGRITY – SAFETY

Al-T Study Implementation
- 28 x Al7075 coupons
- bolt open load (0.5” crack induction)
- exposed to 1850 psi tritium (t=0@RT) up to 1 year
- periodic removal and evaluation of crack propagation with clip gauge
Tritium Safety

• Multiple Reviews Supported

1) Detection Recommendations
 - Kanne
 - Tyne Engineering
 - RGA

2) Handling Support
 - Hut Provision

3) Package Receipt
 - approvals (DOE/DOT)

4) Leak Scenarios
 - scattering chamber
 - Hall A

5) Clean-Up Methods
 - U getter
 - dilute/wait
Tritium Leaks

- Scattering Chamber
 - continuously pumped to <1 x10^-3 torr
 - RGA detection activates bypass to getter bed
 - pumped by CapaciTorr D400-2

- Hall A
 - vented to stack
 - Kanne monitor
 - air turnover and wait
 - possible humidity trapping
Summary and Future

- First Time Tritium Use in TJNAF Experiment
- Necessary to Complete Picture of Nucleon Energetics
- According to PI, One of Top 10 Physics Experiments
- SRTE Handling Target Production and Safe Operation
 - loading, unloading
 - safety reviews, recommendations, equipment
 - material compatibility/effects
- SRNL on Final Paper
- Three More Tritium-Based Experiment Proposals
- Dr. Dave Meekins (PI) 757-269-5434