Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

Energy Efficiency & Renewable Energy

Presenter: Scott Paap – Sandia National Laboratory

DOE Host: Eric Miller – DOE Fuel Cell Technologies Office U.S. Department of Energy Fuel Cell Technologies Office January 21st, 2016

Question and Answer

 Please type your questions into the question box

Exceptional service in the national interest

Potential Strategies for Integrating Solar H₂ Production and Concentrating Solar Power: A Systems Analysis

Scott Paap

Funded by the Fuel Cell Technologies Office U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy Sandia National Laboratories

January 21st, 2016

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2015-10025 PE

Outline

- Introduction
 - Background
 - Modeling approach
 - Key assumptions
 - Concentrating solar power (CSP) overview
 - General comments on CSP-H₂ integration
- CSP-H₂ integration scenarios
- Conclusions and insights

Outline

Introduction

- Background
- Modeling approach
- Key assumptions
- Concentrating solar power (CSP) overview
- General comments on CSP-H₂ integration
- CSP-H₂ integration scenarios
- Conclusions and insights

Hydrogen, heat, and electricity provide links between energy sources

Focus of the current analysis: *Hydrogen* and *electricity* production from solar energy in the form of *heat*

Approach > Assumptions

ons 🔪 CSP overview

7

Hydrogen, heat, and electricity provide links between energy sources

Analysis Goal: Explore pathways for integrating concentrating solar power (CSP) and solar hydrogen production
 → Do synergies exist that could reduce costs?

Analysis Scope: Process-level integration of CSP and H₂ production

- No consideration of H₂ for energy storage
- No transportation/geographical considerations (e.g., benefits of colocating H₂ production near H₂ users)

Modeling approach leverages previous analyses of CSP and H₂ production

CSP

Published reports / models developed at Sandia

- Power conversion calculations and reliability analysis
- Capital and O&M cost estimates
- \rightarrow Levelized cost of electricity (LCOE)
- Cost reduction / performance targets

H₂ Production

DOE H₂ production models

- Discounted cash flow analysis based on conversion efficiency and capital, O&M, and materials costs
- Output is cost of H₂ per kg

Key relationships were extracted and represented in a simplified Excel-based model

CSP-H₂ integration

Objectives:

Background

Approach

- Identify important performance drivers and *fundamental conditions* that favor CSP-H₂ integration (*NOT* process optimization)
- Understand key uncertainties and ensure robustness of conclusions

Assumptions

CSP overview

Assumptions: Process performance and costs

CSP: Process configurations and costs taken directly from DOE and National Laboratory reports
 → SunShot target costs (2020)

Approach

Background

 H₂ Production: Process configurations and costs taken directly from DOE H₂ Analysis (H2A) models
 → "Future Central Hydrogen Production" (start-up year: 2025-2030)

CSP overview

For both H₂ production and CSP, assumptions are based on *future systems*

Assumptions

Assumptions: Future electricity prices

Sandia National Laboratories

- Current electricity prices¹:
 - CA: \$0.13/kWh retail (industrial), ~\$0.04/kWh wholesale
 - AZ: \$0.07/kWh retail (industrial), ~\$0.03/kWh wholesale
- Recent analysis shows solar PV Power Purchase Agreements (PPA) reaching grid parity (after incentives)

Source: Bolinger & Seel, "Utility-Scale Solar 2014: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States," LBNL-1000917, September 2015

Approach

- However, several factors could lead to higher electricity prices
 - Potential increases in natural gas prices (share of electricity generation is rising)
 - Renewables Portfolio Standards (RPS), Cap and Trade, US EPA's Clean Power Plan, etc.
 → Could increase the price of renewable power
 - As penetration of wind and PV ↑, storage capability of CSP could command a premium

¹Source: EIA

Assumptions: Future electricity prices

Future electricity prices (2020-2030) are highly uncertain \rightarrow *Parameterize*

- Assume H₂ plant could purchase electricity at same price that a CSP plant could sell electricity
- Assume CSP and H₂ production facilities owned by same entity

Approach

 H_2 is the primary product \rightarrow account for electricity revenue in H_2 cost

 $(annualized \ capital \ cost)_{with \ e^{-} \ gen} + (0 \& M \ cost)_{with \ e^{-} \ gen} - electricity \ revenue$ $H_2 cost =$ $(annual H_2 production)_{with e^-,gen}(plant availability)_{with e^-,gen}$

Concentrating solar power (CSP)

- Heliostats (mirrors with 2-axis directional control) reflect sunlight onto a solar receiver
- Heat is absorbed by a working fluid and transferred to an electricity generation unit (storage optional)
- Approximate capital cost breakdown:
 - Heliostats: 30-40%
 - Solar receiver: 20-25%
 - Storage: 20-25%

Background

Electricity gen: 15-20%

Solar receiver Source: Sandia (Joe Florez) Thermal storage Hot Salt Cold Salt Storage Tank Storage Tank Heliostat Steam Generator field Electricity generation Conventiona EPGS

CSP overview

Baseline CSP plant: Power Tower configuration with molten salt thermal storage and subcritical Rankine cycle electricity generation → 2010 Sandia estimate: \$0.15/kWh; SunShot goal: \$0.06/kWh

Assumptions

Approach

Define major CSP units for analysis

- Collection of light and conversion to thermal energy (Light \rightarrow Heat)
 - Heliostat field
 - Solar receiver
 - Thermal storage
- Electricity generation
 - Steam generator
 - Turbine
 - Cooling towers

Sandia National

Heat can be treated as a "feedstock"

However, higher T allows *more efficient* production of electricity or H_2 \rightarrow Sandia analysis: Optimal T for CSP is ~565°C

Assumptions

CSP overview

Background

Approach

CSP-H₂ integration

Sandia

National

H2A analyses assume *purchase* of grid electricity

→ Current analysis considers *co-production* of electricity (CSP)

Key question to ask for each process: Are there potential synergies between the processes which would favor co-location of CSP and H_2 production?

- Waste heat streams

Background

- Byproducts \rightarrow Feedstocks

Approach

Thermal energy is a major cost \rightarrow Focus on heat streams for CSP-H₂ integration

CSP overview

Assumptions

CSP yields few byproducts

Background

Approach

Look to H₂ production processes for integration opportunities

Assumptions

CSP overview

Outline

- Introduction
 - Background
 - Modeling approach
 - Key assumptions
 - Concentrating solar power (CSP) overview
 - General comments on CSP-H₂ integration

CSP-H₂ integration scenarios

Conclusions and insights

Three scenarios were analyzed

- 1. Baseline: CSP electricity coupled with polymer electrolyte membrane (PEM) electrolysis (low-T)
- Elevated temperature (850°C) electrolysis integrated with a CSP plant
- 3. High temperature (1380°C) metal oxide thermochemical (TC) H_2 production integrated with a CSP plant

Thermal energy input varies by process

Hydrogen production costs

- Thermal energy
- Capital costs
- Fixed O&M costs
- Electricity cost
- Materials costs

Data sources: H2A models of H₂ production

- High-T electrolysis leverages a relatively small amount of thermal energy to significantly increase efficiency of H₂ production
- Thermochemical metal oxide (TC) cycles convert larger amounts of thermal energy directly to chemical energy
 - Electricity is required to drive equipment, etc.

BASELINE CASE: PEM ELECTROLYSIS

PEM electrolysis case assumes no integration of H₂ production and electricity generation

Image Source: James et al., *PEM Electrolysis H2A Production Case Study Documentation*, Grant DE-EE0006231, Arlington, VA, December 31, 2013.

- Main inputs are water and electricity → No heat inputs
- Electrolyzer stack, power electronics, and H₂ gas management system account for most of capital costs (~70%)

Electricity costs dominate for PEM electrolysis National

Source: James et al., PEM Electrolysis H2A Production Case Study Documentation, Grant DE-EE0006231, Arlington, VA, December 31, 2013.

Results from H2A model of Hydrogen Production from PEM Electrolysis .

- H₂ production via PEM electrolysis requires low-cost electricity
 - Using 2010 SNL estimate of CSP costs (\$0.15/kWh), H₂ cost is \$8-10/kg
 - Using SunShot target (\$0.06/kWh), H₂ cost is \$3.75-\$5/kg

Sandia

HIGH-T ELECTROLYSIS

High-T electrolysis uses thermal energy to increase efficiency

- → A portion of electrolysis energy can be supplied as heat
- Heat input is relatively low:
 6.8 kWh_T / kg H₂, versus electricity input of 33.2 kWh_e / kg H₂

Source: Future Central Hydrogen Production from Nuclear Energy via High Temperature Electrolysis, H2A Case Study

*Forthcoming H2A case will not specify source of thermal energy

 H_2O

CSP Electricity

- Total amount of heat available is similar to H2A case
- Solid particle receivers provide heat at ~850°C

Current analysis assumes solar thermal energy

- Assume solar receiver(s) with 340 MW_T output
 - Total amount of heat available is similar to H2A case
- Solid particle receivers provide heat at ~850°C

Key Factors:

PEM electrolysis

Electricity consumption is high Process yields low-T waste heat

High-temperature electrolysis Case 1

Single tower dedicated to providing thermal energy, multiple additional CSP towers to provide electricity H₂O

11 additional CSP towers would be necessary to supply electricity for each tower supplying exclusively heat for H_2 production

 \rightarrow No process-level integration of H₂ production and CSP

PEM electrolysis

Case 1 looks very similar to H2A case, with heat and electricity provided by solar energy

High-T electrolysis

Metal oxide TC cycles

High-temperature electrolysis Case 2

Single tower dedicated to Hydrogen production

For Case 2, **9%** of thermal energy is used directly for H_2 production, **91%** of thermal energy is used for electricity generation \rightarrow Total H_2 production is 80,000 kg/day

• Thermal energy for electricity gen is $\geq 650^{\circ}C \rightarrow$ Electricity generation efficiency \uparrow

High-T electrolysis

However, cost of thermal energy collection ↑

PEM electrolysis

Metal oxide TC cycles

Trade-off: Power generation efficiency vs. cost of thermal energy collection

Case 1 reduces cost vs Case 2

- Economies of scale and lower cost for thermal energy collection favor Case 1
- Higher power generation efficiency in Case 2 is not sufficient

Electricity cost is the primary driver for the H2A case (purchased electricity)

→ Cost of CSP vs grid electricity determines viability of CSP cases

High-temperature electrolysis Case 3

Utilize two towers for hydrogen production, each providing thermal energy at a different temperature H₂O

18% of thermal energy at 850°C is used to raise electrolysis T

PEM electrolysis

Excess thermal energy from first tower and all thermal energy from the second tower is used for electricity generation
 → H₂ production is 160,000 kg/day

Combining heat from multiple towers has precedent in industry

- eSolar has taken a modular approach for utility-scale solar power tower thermal plants
- Total plant output is deployed in 12MW_T increments for direct steam, 50MW_T increments for molten salt solar fields
- → Similar approach could be taken in collecting heat from multiple towers producing H₂ and electricity

High-T electrolysis

PEM electrolysis

Metal oxide TC cycles

Operation of multiple towers at two different temperatures reduces H₂ cost

 Case 1 remains lowest cost due to large scale and cost-effective collection of thermal energy

PEM electrolysis

• Case 3 is preferred over Case 2 due to lower costs for thermal energy collection

High-T electrolysis

Metal oxide TC cycles

Sandia

METAL OXIDE THERMOCHEMICAL HYDROGEN PRODUCTION

Metal oxide TC cycles convert thermal energy to chemical energy

- Solar thermal energy is utilized for thermal reduction of metal oxide particles at high T
- Thermal energy is rejected at high T (high-quality heat) between reduction chamber and H₂ production
 - → Inefficiencies in heat recovery result in "waste" heat

Metal oxide TC cycles convert thermal energy to chemical energy

- Analysis was based on H2A assumptions
 - Temperatures of reduction (1500°C) and H₂ production (1150°C) were fixed
 - Metal oxide: Ceria
 - 231 small 4.24 MW_T towers (*vs.* one large 1000 MW_T tower for CSP)

PEM electrolysis

Metal oxide TC cycle Case 1: Electricity purchased from the grid

 "Waste" heat is not utilized in the Solar Thermo-Chemical H2A Case Study
 → Case 1 is similar to H2A case

Process consumption of electricity is a relatively minor cost

PEM electrolysis

Breakdown of costs (\$2.29/kg H₂) for H2A case

Source: Unpublished SNL H2A model, "Ultimate" Central Hydrogen Production from Solar Thermo-Chemical Cycle

Metal oxide TC cycles

Metal oxide TC cycle Case 2: Internal power generation from waste heat

No need to purchase grid electricity, but smaller scale of power generation reduces efficiency and increases cost compared to full-scale CSP

Electricity generation from waste heat reduces H₂ cost if electricity price is >\$0.07/kWh

Purchase Power (Case 1)

Internal Power Generation (Case 2)

Electricity is a relatively small cost for metal oxide TC cycles
 → Benefits of internal power generation become more significant as electricity price exceeds \$0.10/kWh

39

PEM electrolysis

Metal oxide TC cycle Case 3: Integration with CSP

- Combine excess thermal energy with thermal energy from a CSP tower
- Temperature of electricity generation is raised

Solar thermal energy collection is more cost-effective at lower T

Electricity generation is more efficient at higher T \rightarrow Electricity generation efficiency increases from 42% to 48%

High-T electrolysis

Value of waste heat is amplified by integration with CSP

PEM electrolysis

Metal oxide TC cycles

Thought experiment: Adjacent H₂ and CSP plants

by 15% (relative), with lower total capital costs

PEM electrolysis

High-T electrolysis

Metal oxide TC cycles

41

Waste heat from H₂ production has high potential value as a CSP "feedstock"

Purchase Power (Case 1)

Internal Power Generation (Case 2)

PEM electrolysis

High-T electrolysis

\$4.00 \$3.50 \$/kg Purchase \$3.00 power Hydrogen cost, \$2.50 (Case 1) \$2.00 Internal power \$1.50 generation (Case 2) \$1.00 Integrated \$0.50 H2 + CSP\$0.00 (Case 3) 50.1A 20.0° 20.22 50.0A 50.08 20.10 Electricity price, \$/kWh 42

Integrated H₂ + CSP (Case 3)

Metal oxide TC cycles

The "optimal" MOTC cycle maximizes H₂ production efficiency

- The "optimal" case assumes efficient heat recovery, higher H₂ production temperature (1150°C)
 - "Waste" heat is minimized
- A second case features lower H₂ production temperature (800°C) and less efficient heat recovery
 - More "waste" heat is available

More "waste" heat increases electricity production

Outline

- Introduction
 - Background
 - Modeling approach
 - Key assumptions
 - Concentrating solar power (CSP) overview
 - General comments on CSP-H₂ integration
- CSP-H₂ integration scenarios
- Conclusions and insights

A few words about uncertainty and sensitivity of results

- Solar H₂ technologies are at an early stage of development
 - Costs and performance are highly uncertain
 - Detailed optimizations are premature
- The key analysis results are the set of insights regarding favorable conditions for CSP-H₂ integration
- These results (insights) are robust
 - Insights are driven by inherent characteristics of processes
 - Insights are unaffected by absolute H₂ production costs (excluding electricity costs)

General conclusions

- Collection of solar thermal energy is a significant cost for both CSP and solar H₂ production
 - Heat integration is a potential strategy for improving the performance of both CSP and H₂ production
 - Optimal temperature of CSP is lower than that for H₂ production
- CSP yields no high-T waste heat or significant material byproducts
 - Necessary to look for potential heat flows from H₂ production to CSP
- Electricity prices have a significant impact on the analysis results
 - From the perspective of H₂ production, CSP-H₂ integration is favored when CSP price is lower than electricity price

Conclusions: High-T electrolysis

- A relatively small input of heat is required compared to electricity needs
 - No high-T waste heat is available from H₂ production
- Integration of multiple towers for combined H₂ + electricity production is potentially attractive
 - More efficient collection and conversion of thermal energy
 - Excess heat from high-T tower can be diverted to raise the efficiency of electricity production by 15% (relative)
 - Diverting high-T heat to power generation will decrease thermal energy collection efficiency
 - Case-by-case optimization will be required to determine lowest-cost configuration

Conclusions: Metal Oxide TC cycles

- For metal oxide TC cycles, high-quality "waste" heat may be available in larger quantities than is needed for internal electricity generation
 - Electricity demand of MO TC cycles is relatively small
 - Internal electricity generation using waste heat has minimal impact for low to moderate electricity prices
- Integration of MO TC cycles and separate CSP tower is potentially attractive
 - Impact of high-T waste heat is amplified by integration with CSP
 - Efficiency of electricity generation could be increased by 15% (relative)
 → Waste heat from H₂ production has high potential value as CSP feedstock
- Future metal oxide TC cycles assume reductions in inert material, high recuperation of high-T heat
 - Current metal oxide TC cycles may generate significantly more waste heat
 Increased potential for electricity revenue as a bridge to future development

Acknowledgements

- Tony McDaniel, Sandia National Laboratories (Metal Oxide TC H₂ production)
- Ivan Ermanoski, Sandia National Laboratories (Metal Oxide TC H₂ production)
- Cliff Ho, Sandia National Laboratories (CSP)

This study was funded by the Fuel Cell Technologies Office in the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy

Question and Answer

 Please type your questions into the question box

Thank You

Presenter: Scott Paap (smpaap@sandia.gov)

DOE Host: Eric Miller (Eric.Miller@ee.doe.gov)

Webinar Recording and Slides: (http://energy.gov/eere/fuelcells/webinars)

Newsletter Signup (<u>http://energy.gov/eere/fuelcells/subscribe-news-and-financial-opportunity-updates</u>)