

Energy Strategies for Our Community

Oneida Tribe of Indians

Energy Audits

U.S. DOE – Tribal Energy Program – 3/25/14

<u>Overview</u>

- Repurchase and restoration of lands a priority since casino started in 1993
- Reservation size of 65,430 acres (roughly 8 x 12 miles) with Oneida ownership of approximately 25,032 acres
- Membership of 16,986 with 7,397 members living on the Reservation or in immediate area
- Surburban sprawl from Green Bay and rising land prices

Energy Team

Oneida Energy Team started in 2006

Four Main Areas of Focus

- 1. Buildings and Operations
- 2. Residential
- 3. Energy Development
- 4. Transportation

Interdepartmental team reports to Business
Committee

Energy Action Plans

DOE Energy Efficiency Development and Deployment Grant

 Energy Audits of 44 tribal buildings to provide detailed feasibility studies and energy savings opportunities for each facility

- SEH/GDS identified improvements for:
 - HVAC Systems
 - Lighting
 - Insulation
 - Motion Sensors
 - Temperature Setbacks

Energy Audits

Oneida Total Energy Cost by Year

neray strategies for our commun

	Buildings	Total	Average		Avera	ge
	with Energy	Square	Heat Degree	Total	Cost p	er
	Data	Footage	Days	Energy Cost	Square F	oot
2008	85	1,229,479	7,854	\$3,207,485	\$2	.61
2009	86	1,289,269	7,777	\$3,183,019	\$2	.47
2010	89	1,289,269	6,993	\$3,141,961	\$2	.44
2011	89	1,289,269	7,675	\$3,188,643	\$2	.47
2012	90	1,289,269	6,251	\$3,009,751	\$2	.33
2013	92	1,376,764	7,614	\$3,213,270	\$2	.33

Results from Site Visits

The 44 facilities audited ranged from 1,200 - 160,000 SF in size, with a combined total square footage of 1,142,577 SF

- Over 680 energy reduction opportunities (ERO) identified in the study. Stand alone measure savings include:
- 3,700,000 in kWh Savings
- 99,500 in Therm Savings
- 1,800,000 in Gallons of Water Savings
- \$480,000 in Annual Savings

Technical Calculations

Quantity of ERO's	General Scope of Measures	Total Est. Project Savings	Total Est. Project Cost	Average ROI
26	Building Weatherization	\$6,554	\$38,795	4.3
14	Water Heater Replacement	\$4,859	\$13,200	4.4
30	Energy Controls	\$4,693	\$3,022	0.6
18	Small Unit Replacement	\$13,235	\$129,025	11.3
144	Operational Adjustments	\$190,056	\$59,159	0.4
194	Relamping / Relighting	\$111,878	\$211,628	2.6
86	Lighting Occupancy	\$37,519	\$132,163	3.2
13	Motors and Drives	\$14,042	\$22,115	3
105	Electrical Demand Management	\$19,853	\$57,620	2.3
36	Water Saving Measures	\$9,075	\$2,920	0.2
8	Building Use Change/Closure	\$11,334	\$12,395	3.1
674	Totals	\$423,098	\$682,042	

Oneida Facilities & DPW Staff

- Jacque Boyle Facilities Director
- Ray Olson Energy Manager
- Kevin Rentmeester Electrical Manager
- Mark Engel Master Electrician
- Mitch Skenandore Journeyman Electrician
- Jill Brocker Journeyman Electrician
- Waylon Denny Journeyman Electrician
- Brad Vanevery Journeyman Electrician

Oneida Social Services Building Electric Usage

Oneida Nation Elementary School Electric Usage

Facility	Description	Amount	Completion	Est. Annual KWh Saved	Est. Annual Therms Saved	Est. Annual Saving
172 Child Care	Outdoor lighting	\$6,675	May-12	23,869		\$2,145
County H Rec Center	Lighting Upgrades (gym)	\$7,337	Feb-13	24,422		\$2,198
Elder Services	Boiler & Controls	\$79,900	Mar-12		6,658	\$6,658
	Air Dirt Separater	\$6,900				
Green Earth Library	Lighting Upgrades	\$2,755	Jun-12	10,555		\$950
Health Center	Pole Lights	\$38,671	Nov-11	127,555		\$11,480
	Soffit lights	\$3,824				
Library	Replace furnaces/AC	\$20,600	Mar-12		240	\$240
Little Bear	Exterior Lights	\$1,808	Mar-12			
NHC	Gym Lighting	\$13,966	Jan-13	61,066		\$5,496
	Outdoor Lighting	\$20,500	Jan-12	72,988		\$6,569
OPD	Outdoor lighting	\$8,105	Apr-12	28,855		\$2,597
Skenandoah	Lighting Upgrades (LED)	\$28,745	Sep-11	106,571		\$9,591
	Outdoor lighting	\$18,031	Nov-11	30,900		\$2,781
Social Services	Lighting Upgrades -gym	\$10,919	Sep-12	40,711		\$3,664
	Lighting Upgrades - 1st Floor	\$7,323	Jan-12			
	Outdoor Lighting	\$51,489	Jun-12	183,311		\$16,498
Turtle School	Big Gym upgrade	\$34,096	Jun-12	44,766		\$4,029
	Outdoor lighting	\$8,523	Jun-12	23,766		\$2,139
	Boilers	\$147,990	Sep-12		12,325	\$12,325
	Chiller and Ice Storage (BIE)	\$320,956	Sep-12			\$32,182
	Interface for Trane	\$6,500	Sep-12			
	Electrical Supplies	\$4,263	Sep-12			
Health Center	Install new roof top units	\$342,030	Jun-13	125,000		\$11,000
	Electrical panel/components	\$9,456	Jun-13			
	Electrical supplies	\$15,563	Jul-12			included
	TOTAL FOR ALL PROJECTS	\$1,216,925		904,335	19,223	\$132,542

<u>Next Steps</u>

- Continue efficient implementation of audit recommendations
- Monitor energy usage and document effectiveness of upgrades
- Advocate for energy efficiency and life-cycle considerations in any new building construction
- Work as a coordinated Energy Team to support residential, transportation, and renewable efficiencies as well

Energy Strategies for Our Community

GENE SCHUBERT – ENV POLICY ANALYST ESCHUBER@ONEIDANATION.ORG 920-496-5362

Yaw^ko! (Thank you)

Shekóli (Greetings) from Oneida

ENERGY OPTIMIZATION MODEL

Department of Energy Tribal Energy Program Review Denver, Colorado

Michael Troge Oneida Tribe of Indians of Wisconsin March 24 - 27, 2014

AGENDA

- the idea of sustainable energy
- current energy situation
- energy optimization model
- findings
- initiatives
- projects

Thank you!

- Department of Energy & Tribal Energy Program
- H&H Energy Management Systems (Madison, WI)
- Godfrey & Kahn S.C. (legal-financial advisor)
- Oneida Tribal Energy Team, Department of Land Management, Department of Public Works, Environmental Resource Board, Planning, Staff
- Partners: UW-Extension, State Energy Office, Focus on Energy, USDA, EPA, Wisconsin Public Service, WE Energies
- Energy Information Administration and the Energy Laboratories for their stats and research

CHALLENGES

- Population
 - Carrying Capacity
 - Water
 - Food
 - Infrastructure
 - Climate
 - Energy

• Money!

???

History of Energy Consumption in the United States, 1776-2012 (U.S. Energy Information Administration 2013)

What's the concern????

We are a small community

in a GLOBAL ECONOMY! We face an uncertain future!

PERSONAL OPINION: COMPETITION AMONG COMMUNITIES IS NOT IN OUR BEST INTEREST!

As I see it, we're in transition

Sustainability & Cooperation

Competition....Winners and Losers

Key Elements of a Renewable Energy Community

Nancy Carlisle et. al., 2008, National Renewable Energy Laboratory

- 1. Sustainable Design
- 2. Solar/Zero Energy Buildings and/or Micro-Grids
- 3. Advanced and Energy Efficient Transportation
- 4. Utility Role Expansion
- 5. Putting it all together

Estimated U.S. Energy Use in 2010: ~98.0 Quads

o bion

Sholthey,

0

JEIOS

Source: LLNL 2011. Data is based on DOE/EIA-0384(2010), October 2011. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports flows for hydro, wind, solar and geothermal in BTU-equivalent values by assuming a typical fossil fuel plant "heat rate." (see EIA report for explanation. End use efficiency of electricity generation. End use efficiency is estimated as 80% for the residential, commercial and industrial sectors, and as 25% for the transportation sector. Totals may not equal sum of components due to independent rounding. LLNL-MI-410527

1 QUAD is enough energy to power 32 million homes

https://flowcharts.llnl.gov (Lawrence Livermore National Laboratory)

Oneida Energy Situation

Current Tribal community energy usage as of 2011 = 412,000 MMBtu. = 121 million kWh

Institutional electricity:	31,000,000 kilowatt-hours	=	105,000 MMBtu
Institutional natural gas:	540,000 therms	=	54,000 MMBtu
Institutional transp fuel:	145,000 gallons	=	5,000 MMBtu
Housing electricity:	16,000,000 kilowatt-hours	=	48,000 MMBtu
Housing natural gas:	2,000,000 therms	=	200,000 MMBtu

5% RPS = 20,600 MMBtu = 6 million kWh 10% RPS = 41,200 MMBtu = 12 million kWh 20% RPS = 82,400 MMBtu = 24 million kWh

Electricity Use by Building (not therms)

Solar

Examples projects And Financial data

Oneida Elementary (Turtle) School

Facility	Usage	Size PV	Cost	% of Usage
Turtle School	1,373,600 kWh	550 kw	\$1.65 million	49%

662 kW total, 510 kW on the shell, 107 kW on the head, 45 kW on the tail.

<u>Assumptions</u>: 60 cell modules (avg. 265 watts each), 25 deg tilt, ballasted design, no inverter site constraints

Economics

SOVEREIGN

REVOIDUGA

		Energy Production, Cost, Economics and Environment
В	Α	Energy Production
659.85	659.85	Solar PV system rated capacity (kW - DC)
816,894	816,894	Estimated annual output (kWh/yr)
49%	49%	Percentage of facility usage
		Cost
\$1,667,340	\$1,667,340	Estimated solar PV installed cost
\$500,202	\$0	Federal tax credit
\$0	\$0	Focus on Energy rebate (pre tax value)
\$564,747	\$0	Net present value of accelerated depreciation (5 years)
\$602,391	\$1,667,340	System cost after incentives (after tax benefits)
		Economics
\$985,474	-\$79,475	25 year discounted net present value (NPV)
10.5%	2.3%	25 year internal rate of return (IRR)
9.5	26.3	years until cost recovery
		Value
\$1,904,697	\$1,904,697	GROSS value of energy production over 30 years (NPV)
\$1,302,306	\$237,357	NET system value over 30 year system life (NPV)
\$0.026	\$0.073	your pre-purchased energy price with a solar PV system (\$/kWh)
		Environment
905.1	905.1	CO ₂ emission offset (tons/year)
	and the second second	Assumptions
\$2,527	\$2,527	System cost per kW
35%	35%	Federal income tax rate
7.9%	7.9%	State income tax rate
\$0.080	\$0.080	Electric rate in current year (\$/kWh)
	3.20%	Estimated electric rate price inflation (%/year)
3.20%	0.2070	
3.20% 0.50%	0.50%	Panel efficiency degradation (%/year)

ribal owned with no tax credits applicable, B – Private taxable entity ownership

AJRCCC solar thermal (Actual Project!)

Wind

Potential sites And Financial comparison

Wind Turbine Potential

Wind Resource at 70 meters - Oneida

Benefits in the West:

- **Better wind resource**
- Less populated •
- Fewer trees, agriculture
- Interconnection

Wind Financial Comparision

	Scenario #1	Scenario #2
Project size	1.7 Megawatts	1.7 Megawatts
Production	5.4 million kWh	5.4 million kWh
Project life	25 years	25 years
Power purchase price	\$0.04 / kWh	\$0.04 / kWh
Grant	\$912,000 (25%)	\$0
Tax Credit	\$0	\$0
Installation cost with transmission	\$2.7 million	\$3.6 million
Payback	15 years	24 years
IRR	5.4%	0.2%
NPV	\$433,556	-(\$586,126)

Main reasons these technologies are not adopted...

- Primarily economic competitive markets don't recognize social benefit
- Fossil fuel industry is firmly established
- Subsidies don't go to the priorities
- Not policy driven or inconsistent policies
- The price we pay for energy does not reflect the cost of producing it
- State renewable portfolio standard (currently at 10%) has been achieved in large part using nondomestic sources (Canadian Hydro)

Challenges with Current Utility Policy

• Net Metering

- Wisconsin Utility policies inconsistent
- Cap at 20 to 100 kW for true net-metering
- Over-production is credited at the "avoided cost"
- monthly basis

• Third Party Ownership

- Third party ownership of wind and solar not explicitly allowed at the state level
- Interconnection and other roadblocks discourage the future of renewable energy

Residential PV customer acquisition costs: Current trajectory and roadmap (Ardani et al. 2013, [NREL])

Exploring other support mechanisms

- Cost of Solar going down!
- 3rd party ownership (currently not allowed by our Public Service Commission)
- Bulk purchase programs
- Community investment
- Renewable Energy Credits
- PACE Property Assessed Clean Energy
- Energy efficiency is still the primary goal

Renewable Energy Funding Matrix

	Financing Method	Risk	Likelihood of Success	Rates of Return
Tribe Self-	Cash	Low	High	Low
Funds Projects	Bond/Debt	Low	High	Low
Grants	DOE Tribal Energy Grant	Low	Low	High
	Focus on Energy (State- Level) Grant	Low	Medium	High
Partnership	Sale Leaseback	Medium	Medium	High
with Taxable Investor	Partnership Flip	Medium	Medium	High

Partnership with Taxable Investor

- Renewable energy projects receive tax benefits
- Tribes have indirect access to Federal tax benefits while limiting up-front costs

– Sale-Leaseback:

- Project sold to Tax Equity investor
- Leased back to the Tribe
- End of term purchase (usually 5-9 years)

- Partnership Flip:

- Project company jointly owned by a tax equity investor and the Tribe
- Tax benefits and power revenue go to investor
- Tribe buys out investor at end of term

Biomass (Thermal)

Fuel comparison And Future costs

TABLE 2 - Fuel type comparison - in order of cost (2013)

Fuel Type	Energy Content (Btu)	Seasonal Efficiency () = efficiency value used to determine cost	Unit Cost ⁴	Cost Per 1,000,000 Btu	
Natural Gas	100,000 per therm	70-94% (90%)	\$0.80 per therm	\$8.89	
Wood Chips	3,780 per pound (@ 50% moisture) to 6,190 per pound (@ 25% moisture)	50-75% (70%)	\$50 per ton (50% moisture used to determine cost)	\$9.45	
Wood used in OWB - EPA Phase 2 ¹	22,000,000 per cord ³	69%	\$225 per cord	\$14.82	
Wood Pellets	15,400,000 per ton	70-85% (80%)	\$190 per ton	\$15.42	
Propane	92,000 per gallon	70-94% (90%)	\$1.60 per gallon	\$19.32	@ \$5/gal,
Wood used in OWB - Pre-2008 ²	22,000,000 per cord ³	40%	\$250 per cord	\$28.41	\$60/MMBt
Shelled Corn	380,000 per bushel (@ 15% moisture)	70-85% (80%)	\$360 per ton	\$29.61	
Heating Oil	138,000 per gallon	70-85% (75%)	\$3.6 per gallon	\$34.78	Sanford
Electricity	3,413 per kWh	100%	\$0.12 per kWh	\$35.16	Cont A

¹ Meets EPA Phase 2 emissions requirement

²Typical pre-2008 outdoor wood-fired boiler (does not meet EPA Phase 2 requirement

³6,500 Btu/pound (20% moisture)

⁴Fuel costs in Madison, WI for 2013-14 heating season delivered to point of use (does not include any storage costs)

FIGURE 3 - Fuel cost per 1,000,000 Btu (see Table 2 for energy and fuel cost assumptions)

Oneida Farm Grain Dryer

	Fuel Comparative						
		Current System	Biomass	stems			
1	System	Fossil Fuel	Pellets (100%)	Chips (100%)			
	Model	MC 980	Even-Temp	Even-Temp			
	Output	3,662,005	3,180,000	3,180,000			
	Age/Cost	20 years	\$116,000	\$130,000			
	Fuel						
	Туре	Propane	Wood Pellets	Wood Chips			
	Units	Gallons	Tons	Tons			
	Normalized Units	15,826	86	130			
	Cost/Unit	\$1.20	\$180	\$55			
	Total Cost	\$18,991	\$15,527	\$7,163			
	Energy Inflation	3%	3%	3%			
	Annual Savings		\$3,464	\$11,828			
	Estimated Payback (Years)		23	9			

Biomass resources

- DOE funding for first 2 years of 5-10 yr study
- Partnership: Oneida Tribe, UWGB, UWM, WDNR, NRCS, DOE

Opportunity to use agriculture as a means to grow a local thermal energy crop.

 Research, investment, marketing, & business model vital to success

Conservation Department Demonstration

SCHEMATIC: CONSERVATION WORKSHOP BIOMASS HEATING SYSTEM

January, 2013

Benefits of Local Biomass Energy (sustainable harvest of grasses and trees)

Economic & social

- Local source
- Transport costs kept low
- Local jobs
- Keep dollars local
- Heating source
- Possible Biofuels
- Use existing equipment
- Keep capital costs low

Environmental

- Water quality improved
- Habitat improved
- Soil erosion mitigated
- Phosphorus runoff mitigated
- Recycled carbon (GHG)
- Regenerates itself
- Low maintenance
- Restore pre-industrial landscape

ONEIDA EVENT

What: Heating the Midwest

Who: anyone interested in biomass energy, especially Tribes

Where: Radisson Hotel and Conference Center

When: April 29 pre-conference tour April 30 – May 1 conference

http://heatingthemidwest.org/ conferences/

Hosts: Heating the Midwest Oneida Tribe of Indians of WI University of Wisconsin Green Bay Heating the Midwest with Renewable Biomass

A Midwest Vision for 2025

Key Findings and Outcomes

- Achieve 15% of all thermal energy from renewables by 2025
- Reduce 1.01 billion gallons of propane and 278 million gallons of heating oil
- Reinvest \$2.2 billion into the Midwest economy
- Create 13,170 jobs from the expansion of the

Achieve 10% of all thermal energy from biomass by 2025

thermal biomass industry and up to 210,000 direct, indirect and induced jobs from annual energy savings and the effects of no longer exporting heating fuel money from the region

- Supply 17.2 million green tons of sustainable woody and agricultural biomass for thermal energy and combined heat and power by 2025
- 12,630,950 homes and businesses are not connected to low-cost natural gas
- Improve air quality, reduce greenhouse gases, and enhance forest management
- Vitalize communities through rural economic opportunities, new industry and innovation

The Vision

We propose that 15% of all thermal energy in the Midwest come from rendsources with 10% derived from sustainably produced biomass by 2025 of this energy would come from solar thermal and geothermal sources. To sources for thermal energy will produce extraordinary economic, social and benefits for the Midwest, which currently relies on fossil fuel for 97% of its the

Yaw^ko!

Michael Troge Environmental Project Manager Oneida Tribe of Indians of Wisconsin PO Box 365 Oneida, WI 54155 <u>mtroge@oneidanation.org</u> 920-869-4572

