Pinoleville Pomo Nation
Renewable Energy Feasibility Study Status

David Edmunds
Environmental Director, Pinoleville Pomo Nation

Ryan Shelby
Alfred P. Sloan Ph.D. Student Scholar, UC Berkeley

2009 U.S. Department of Energy Tribal Energy Program Review
November 18, 2009
Strategic Plan

- Self-sufficiency
- Job creation
- Revenue creation
- Cultural integrity
Strategy Into Energy Goals

- Choose energy technologies that reflect cultural values
- Small-scale, multi-source energy to maintain flexibility and resilience
- Potential to be off-grid
- Local M & O capability to generate jobs
- Support local projects first
- Sell enough to cover perhaps 50% of costs
Constraints

- Small land base
- Checkerboard
- Small population
- Few in-house tech skills
- Newly back on the land
- Little money
Opportunities

- New projects coming
- Access to potential markets
- Access to technical support
- Access to biomass
- Favorable micro-geography
Approach

• Multi-tribal

• Small pilot projects to test principles, build support, develop capacity

• Tied to other projects (prototype house)

• Co-design process
 – Tribal citizens as experts/designers
 – Centering cultural values
 – Providing educational opportunities
Introduction to CARES

• CARES is an engineering and sustainability assessment organization based at UCB

• Participants include community, industry, academia, and government reps

• Team members disciplines:
 – Engineering (Mechanical, Electrical, Civil)
 – Architecture
 – Business
 – Environmental Design and Planning
Mission of CARES

• Enable consumers and stakeholders to make informed decisions about sustainability and renewable energy technologies

• Co-design and implement solutions that meet end user needs
New Product Development (NPD) Process
Central Tenets: Technology Driven Design Methodology

• Technology Centered Design focus:

I. Performance
II. Reliability
III. Manufacturability
IV. Price Points
V. Time to Market
Central Tenets: Co-Design Methodology

• Co-Design focus:

I. End user is expert on needs

II. End users and designers both control idea creation

III. Idea creation is done in the usage environment
Codesign: Innovation Workshop 2008

• Workshop held to understand needs and brainstorm concepts with PPN.

• Focus on is on the principles and goals of end user

• Good and Bad Technology Round Robin Session

• Split Group User Needs Assessment Session
 – Elders
 – Adults
 – Youth

• Brainstorming on Conceptual Designs Session
Innovation Workshop 2008: Top Needs and Metrics

• Learn and Use Traditional Techniques (Cultural Values)
 – Round Shape
 – Natural Materials

• Energy Conservation
• Water Conservation
• Privacy
• Exercise
• Storage
• Safety
• Comfort
• Lower Energy Costs
• Space
Innovation Workshop 2008: Co-designed Concepts

Conceptual Home Design 1 with Solar and Wind Power Generation
Conceptual Home Design 2: Wind Power Generation and Grey Water
Pomo-inspired Housing Prototype
Draft Plan ‘A’ for PPN Sustainable Home

Plan not to scale
North is ↑

- Entry
- Dining Area
- Kitchen
- Mud Room
- Bathroom
- Living Room / Family Area
- Master Bedroom
- Bedroom
- Garage
Renewable Energy Feasibility Study: Overview

- **Focus areas:**
 - micro-hydroelectric,
 - moderate-temperate geothermal electrical,
 - geothermal heat pumps,
 - biomass,
 - biogas,
 - wind,
 - solar electric,
 - solar thermal

- **Deliverables:**
 - Deployment and development plan that has the renewable energy options and designs that meets the PPN’s cultural, environmental, and economic requirements
Renewable Energy Feasibility Study: Work Done So Far

- Historical Avg. Electricity Consumption of PPN Homes
Renewable Energy Feasibility Study: Work Done So Far

• Estimated Avg. Electricity Consumption of PPN Homes after Efficiency

20 – 30% electricity savings projected
Renewable Energy Feasibility Study: Work Done So Far

- Determined the solar insolation potential of the Sozzoni property for 2010
I. Conduct Series of Innovation Workshops
 • Understand previous work done
 • Identify fundamental needs and preferences of Pinoleville Pomo Nation
 • Prioritize focus areas and determine product specifications
 • Establish synergy with other Native American Nations

II. Assessing energy potential of resources
 • Solar insolation
 • Volume flow rates
 • Wind speeds at varying heights (30 m, 50 m, 70 m, 100 m)
 • Yamobida (Pomo for wind hole creek)
 • Biomass potential from local forest companies
 • Biogas potential from local waste
III. Co-design energy systems for deployment

- Reconvene with PPN to analyze data and design system
- Culturally appropriate
- Multi-source, resilient
- Power Generation Capacity
- Economic ROI
- Job Creation Potential
- Maintenance and Operation by PPN
- GHG emissions production and ROI
- Reliability of Supply
- Market for Sale (i.e. sell back to grid)
Final Thoughts: Lessons Learned

• There is no one standard for sustainability; merely frameworks

• Sustainability is personal; must be defined by the end user

• Key is to harness the local knowledge within end user group

• Co-design changes the power dynamics to utilize expertise of all

• Co-designing Solutions → Willingness to Adopt
A Note on Engineering Support.

• How can small tribal nations meet engineering needs?
 – Need to have technical partners worthy of trust
 – Need to work with other tribes
 – Need to control costs
 – Prefer iterative, co-design process to assure social structures and cultural values honored

• Creating an innovation hub with CARES
 – Available and accessible to tribal nations
 – Responding to a wide range of tribal needs
 – Committed to building tribal capacity, educating youth
 – Associated with university, but responsible to tribal nations
Acknowledgements

• Leona Williams (PPN), Carrie Williams (PPN), Don Williams (PPN)

• Erika Williams (PPN), Deborah Smith (PPN), Monica Brown (PPN)

• David Ponton (PPN), Angela James (PPN)

• David Edmunds (PPN), Kimberly Tallbear (UCB), Michelle Baker (EPA), Alice Agogino (UCB)

• Yael Perez, Tobias Schultz, Francesca Francia, Cynthia Bayley, Che (Tommy) Liu, Yao Yuan, and Aaron Chang (UCB, CARES)
Ask some sustainable questions