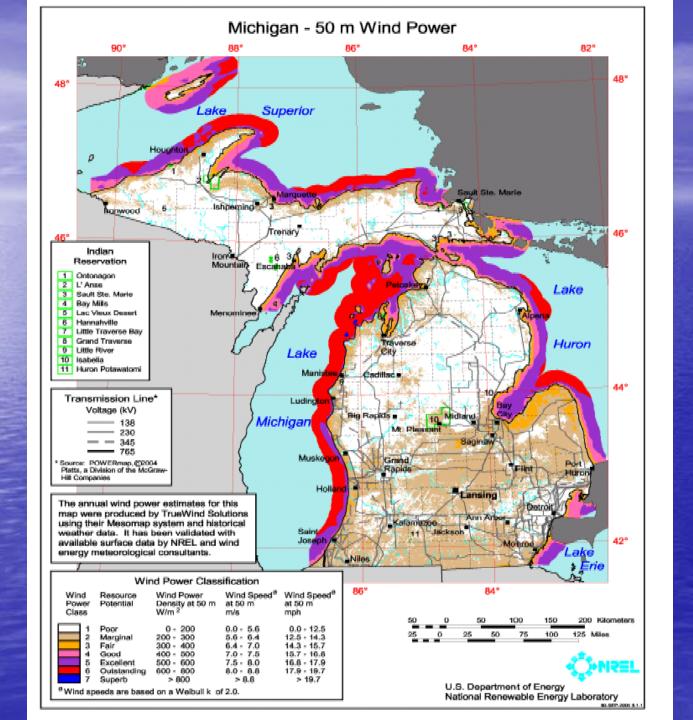
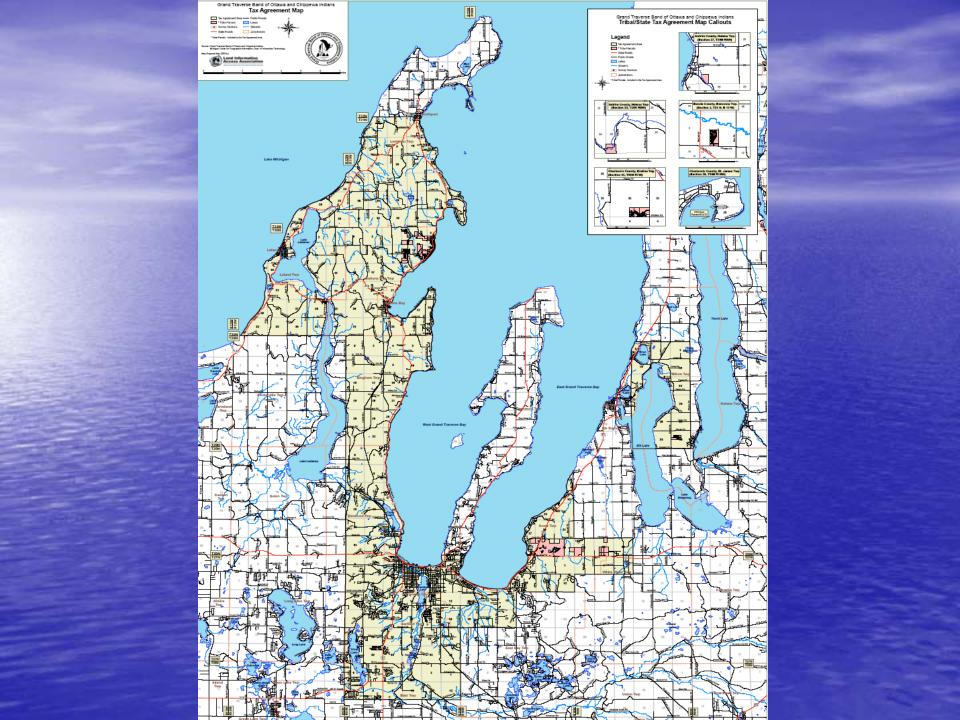


Grand Traverse Band of Ottawa and Chippewa Indians

Renewable Energy & Energy Efficiency Feasibility Study
DOE Tribal Energy Program Review
Denver, Colorado
November 5-8, 2007


Final Report December 2007


Grand Traverse Band

- 4,023 Members
- 2,370 Acres Checkerboard
- Six-County Service Area
- EDC: 2 Casinos, Resort (424 Rooms), Gas Station, etc.
- Gov't: Administration, Housing,
 Medicine Lodge, Strong Heart Center,
 Day Care, Natural Resources, etc.

Grand Traverse Resort and Spa

GTB Energy Vision & Plan Three Focus Areas:

Energy Diversity

Environmental Quality

• Economic Benefits

Action Plan

 Conduct energy diversification feasibility study

Financing plan

Public education campaign

Distributed renewable power study

Project Objectives

Project Goal: To conduct a feasibility study to determine the cost effectiveness and other economic, environmental, cultural and social benefits of maximizing the diversity of energy sources used at GTB facilities.

Grant Timeline: 9/15/05 to 12/31/07

Project Partnership

Traverse City Light & Power (TCLP)

MOU between GTB and TCLP

Sharing wind energy monitoring and evaluation

Sharing electric utility expertise

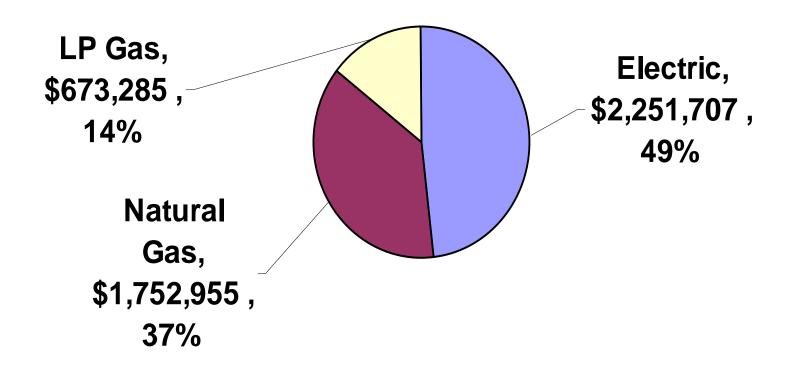
GTB Renewable Energy Options

- Biomass (wood and crops) & District Heat
- Solar thermal
- Solar electric (photovoltaics)
- Passive solar buildings and designs
- Small scale wind power
- Large scale wind power
- Economic integration of renewable energy
- Energy efficiency & Combined Heat & Power

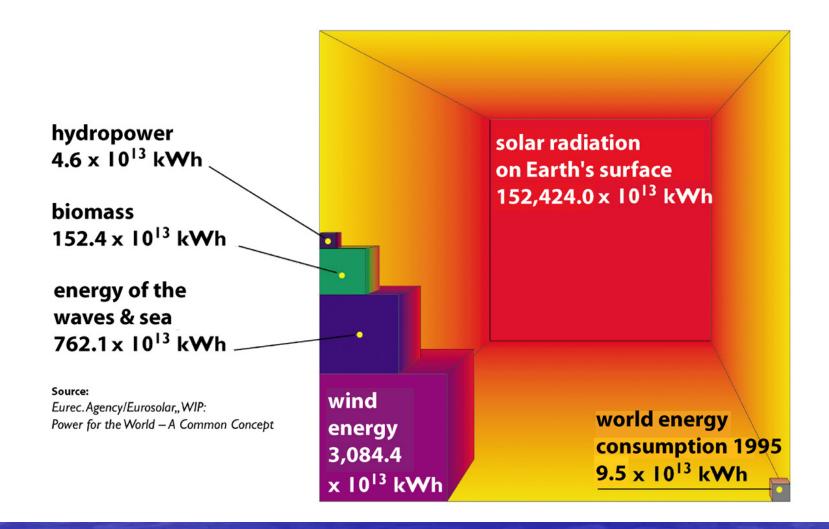
Site Specific Resource Monitoring

- Comprehensive survey of all GTB properties and energy consumption
- Review of existing data: solar, wind, biomass
- On-site wind resource monitoring, and preparation of a regional GTB wind map
- Wind data sharing with TCL&P
- Survey of biomass resources
- Survey of solar resources

GTB Energy Demand


- Total Cost: \$4.67 million/yr
- Electric Cost: \$2.25 million/yr
- Natural Gas Cost: \$1.75 /yr
- LP Gas Cost: \$674,000
- Electric kW-hrs/yr: 30 million
- Natural Gas ccf/yr: 1.8 million ccf
- LP: 673,000 gallons/yr
- Peak KW: 3,600 (Commercial/Public)

Wind Accomplishments


- MOU with Traverse City Light & Power
- Wind monitoring completed (June 2007) on GTB GT Resort "Hoxie" property
- TCL&P monitoring in Long Lake Twp completed August 2007
- Resource & Economic Feasibility for wind power

GTB Energy Breakdown By Fuel

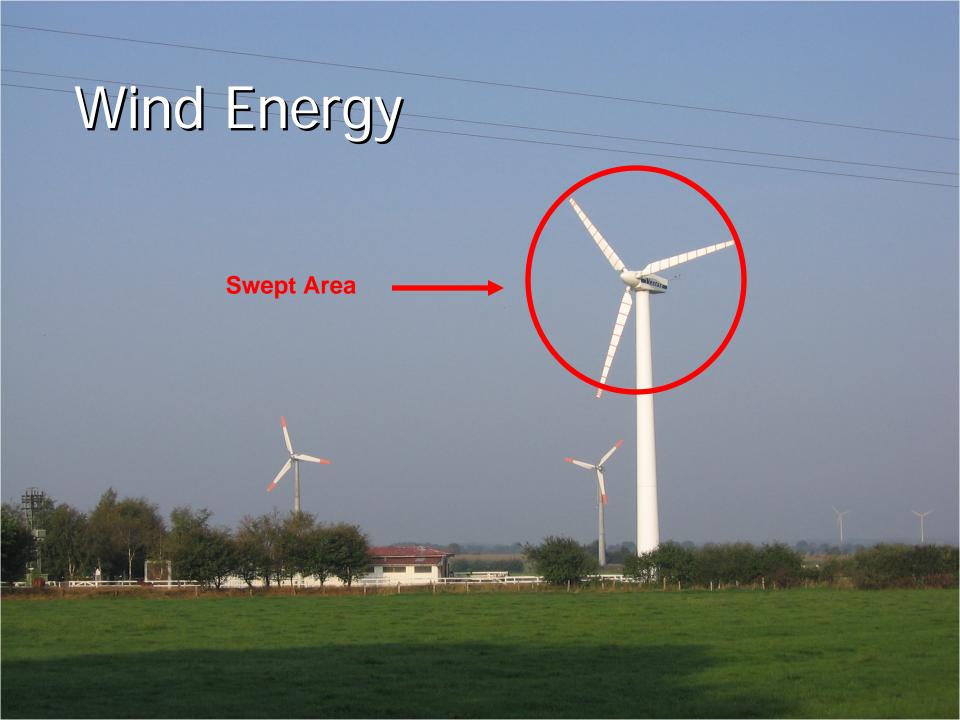
Public, Commercial & Residential (Does not include wood heat)

The Potential of Renewable Energies Worldwide

GRAND TRAVERSE BAND RENEWABLE ENERGY FOR GT RESORT & TURTLE CREEK ACME & WHITEWATER TOWNSHIPS, MICHIGAN

Prepared by: Steve Smiley (231) 271-4850 smiley27@earthlink.net

Wind Turbine Area GRAND TRAVERSE RESORT Question: How do we make GTB 100% GTB Waste Water Plant renewable heated and electric powered? Wind Turbine Area Exisitng Turtle Creek Casino Energy Loads Can we use TCL&P, WPSC or CE for sale of Electric: 12,600 mWhrs_/yr Electric Loads: 3,000 mWhr_/yr green power to leverage economic fessibility? GTB Land Natural Gas: 15,528 mWhrs/yr Thermal Loads: 1,260 mWhr₈/yr Room for 4 WTG's "Note: Wolverine Power Cooperative had an RFP Natural Gas Heating Load for the purchase of green power, mostly wind, but 4 - 12 mW Peak Capacity LP Gas Heating Load 53,000 MCF Natural Gas/yr 8 - 25 million kWhr/yr 45.733 Gallons also biomass electric generation. 4.300 Million BTU/yr 53,000 Million BTU/yr 23% - 25% Capacity Factor Request was for between 25 & 100 million kW-hrs/yr 56,000 Glga-Joule/yr Delivery date is December 2007. 4,500 Giga Joule/yr Annual Gas Cost US\$455,396 Rallroad Biomass Annual LP Gas Cost: US\$70,000 Wind Turbine Area Heat & Golf Course "Hoxie Property" Industrial Zone Electric Electric Supplier: Cherryland Coop Electric Loads (with Air conditioning) Room for Blomass Plant (CHP?) Plant? Generation Cooperative: (WPSC) Electric Supplier: Consumers Energy GTB Land 12,600,000 kW-hrs/yr GTB Land Sub-station Sub-station 3,000,000 kW-hrs/yr 2,600 Peak kW < 5 MVA GTB NEW 605 kW Peak Room for 2 WTG's 7.5 MVA Land TURTLE 346 kW Average 1,432 Average kW 2 - 6 mW Peak Cap. Consumers WPSC 4 - 12 million kWhr/yr Annual Cost US\$752.715 69 kV line CREEK Annual Electric Cost: US\$216,464 Energy CASINO Total Annual Cost: US\$286.464 Total Annual Cost: US\$1,208,111 Note: Plans to expand by factor of 2 4 km (2.5 miles to 7.5 MVA Sub-station 1 km (.6 mile) Highway M-72 E 5 km (3 miles) between GT Resoft and Turtle Creek Casino. Acme Village Acme Township - New Town Center (Planned) Note: Wood Fuel Supply available at \$20/ US ton Population: +/- 2,000 4,500 BTU/pound Low Density Residential Min: 400,000 sq. ft. of Business and Residences Or approxmately US\$ 2.50 per Giga Joule Business District: (37,000 m2) Natural Gas: US\$10 per Giga Joule (+/- 30%) Small shops, strip mails To be built in next 3 - 6 Years. Can deliver fuel by truck or rail Solar thermal? Total Township pop. 3,400 Dump low marginal cost wind to heat? Rallroad Energy Storage? Absorption cooling?


Accomplishments: Technology and Economic Evaluation

- Wind Power (small and large)
- Biomass (heat and power)
- Solar Thermal (hot water)
- Solar Electric (photovoltaic)

50 Meter (164 ft.) Meteorological Towers

GT Resort Site - Large Wind

- Annual wind speed average at 50 m (164 ft)

 4.8 m/s (10.8 mph)
- Annual wind speed average at 100 m (328 ft) 6.3 m/s (14 mph)
- Shear factor approximately .2

Energy Per Swept Area in kilowatt-hours per square meter per year

- Wind Turbine Annual kW-hrs/sq.meter/year 80 m 719 kW-hrs/m²/yr
- Wind Turbine Annual kW-hrs/sq.meter/year 100 m 790 kW-hrs/m²/yr

Reference Note:

- Existing TCLP V-44 600 kW-hrs/sq.meter/year 522 kW-hrs/m2/yr
- Percent increase in energy for GT Resort 100m vs. V44 in Elmwood 51%

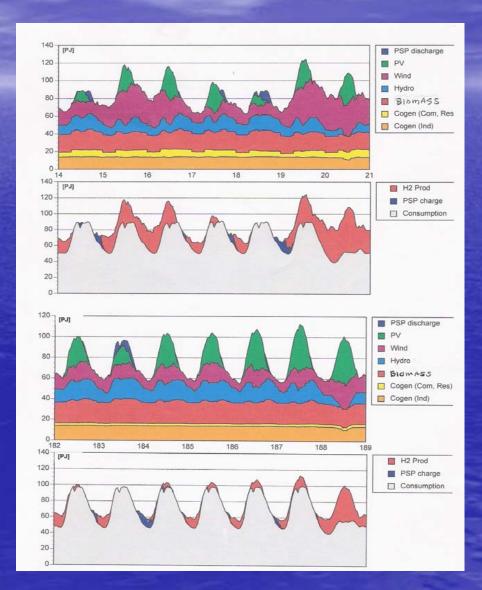
Wind Power Economics for Sample Large Wind Turbines (1500 kW)

- Total Installed Cost: \$2.2 million
- Annual Revenues: \$ (200,000 w/ REPI)
- Annual O&M Expenses: \$24,000
- Cost of energy \$.054/kWhr w/ REPI \$.035/kWhr
- Annual Electric Generation: 4 million kWh
- Lifetime: 20 years

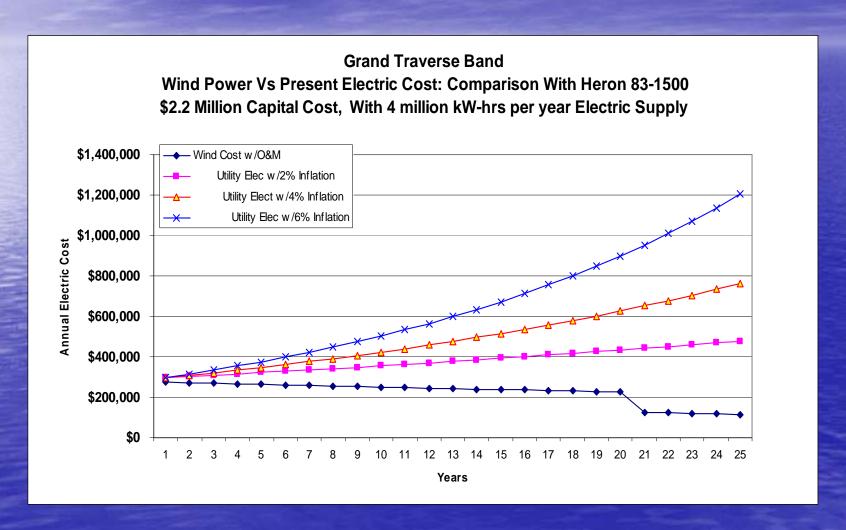
Wind Briefing Paper –Summary

Grand Traverse Band of Ottawa & Chippewa Indians (GTB)

Peshawbestown, MI 49682


January 2007
Commercial Wind Power Project
Capital Cost: Range from \$1.2 million to \$24 million
Capital Cost: Single wind turbine (minimum

recommendation) \$1.2 million.


Capital Cost: To meet 100% net electric needs of the GT Resort/New Turtle Creek Casino with wind power: Capital Cost: \$14 million to displace \$1.3 million annual electric cost and 18.6 million kW-hrs per year. Capital Cost: To account for 100% of GTB commercial, public and residential electric use with wind power - \$24 million.

Integrated Renewables For GTB

- Integrating all the renewable energy sources such as wind, solar (thermal & electric), & biomass
- And enhancing them with efficiency, combined heat and power, and district heating systems
- And implementing them on a community basis-can meet our 100% renewable energy goal!

One Large Wind Turbine: 25 year net revenues of between \$4 and \$12 million

Accomplishments:

Biomass

- Extensive Biomass Energy Evaluation
 - Sustainable harvest of biomass
 - Supply sources far exceed project demands
 - Present supply, distribution and markets well developed

Why Burn Wood? Biomass is:

- Humanity's Oldest Fuel
- Locally Available
- Often a Waste Product
- Can Be Low Cost
- Low In Sulfur, Nitrogen,
 Mercury and Other Pollutants
- Carbon Dioxide Neutral
- A Renewable Resource
- GTB Woodlands Are Sustainable
- Low Cost Fuel \$20/ton (\$2 vs. \$10 natural gas per MMBTU)

District Heat Distribution System

- Buried Supply and Return Pipelines
- Pre-Insulated Twin-Pipe
- Use Sidewalks and Some Roads
- Individually Metered

Photo courtesy of Force Technology

Residential Connection

Photo courtesy of Force Technology

Biomass District Heat Study Options

- Peshawbestown (West & East)
- Charlevoix
- Benzie
- New Turtle Creek
- GT Resort, New Turtle Creek, New Acme

Preliminary Residential Biomass Feasibility

- Up to 100 homes in district
- \$16,676 per home
- 100% wood space& hot water heat
- 12 year simple payback
- Added O&M
 savings, social &
 environmental
 benefits

Peshawbestown District Heating Loop

COST ESTIMATE

HURST HOT WATER BOILER, 600 GPM ~ 130F IN TO 180 F OUT \$411,825.00
FREIGHT TO JOBSITE \$25,000.00
FOUNDATION \$9,000.00
FIELD ERECTION \$125,000.00
START-UP & OPERATOR TRAINING \$95,000.00
FUEL HANDLING \$95,000.00
OPTIONAL EQUIPMENT \$62,909.00

TOTAL BOILER COST, INSTALLED AND RUNNING

\$739,138,00 BUDGET

\$525.00 AIR HANDLING UNIT COST \$200.00 AIR HANDLING UNIT INSTALLATION--GUESS ONLY \$725.00 TOTAL COST PER INSTALLED AIR HANDLING UNIT 120.00 AIR HANDLERS REQUIRED

\$87,000.00 TOTAL AIR HANDLING UNITS COST

BUDGET

PIPING COST

\$650,000.00 PLACE HOLDER ONLY. NEED SITE SPECIFIC DETAILS ON INSTALLATION.

BUDGET

ENGINEERING AND PROJECT MANAGEMENT

\$200,000.00 PLACE HOLDER ONLY

BUDGET

TOTAL INSTALLED COST

\$1,676,138.00

BUDGET

WOOD FUEL COST

4500 BTUILB WOOD HEAT CONTENT
4350 POUNDS PER HOUR OF WOOD REQUIRED
2.175 TONS PER HOUR OF WOOD CHIPPED AND DELIVERED
18.00 DOLLARS PER TON FUEL COST
\$39.15 FUEL COST PER HOUR FOR 120 HOMES
\$0.200 PER THERM WOOD FUEL COST

NATURAL GAS FUEL COST

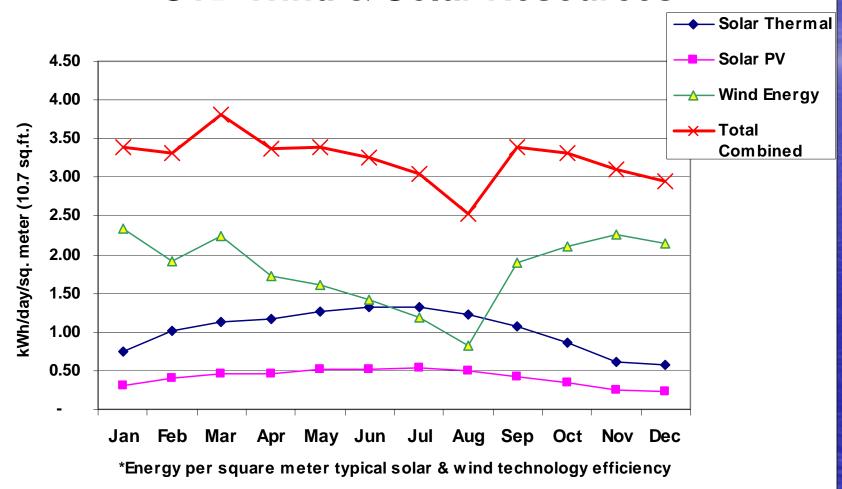
80,000 BTUH PER HOUSEHOLD

0.8 THERMS PER HOUSEHOLD

\$1.20 PER THERM NATURAL GAS COST

100 HOMES

85.00% NATURAL GAS FURNACE EFFICIENCY


\$112.94 FUEL COST PER HOUR FOR 120 HOMES

New Turtle Creek & GT Resort District Heat

100% Biomass Heat 70% CHP Electricity Additional heat & electric sales Net \$1 Million/yr savings \$11 Million +/-Capital Cost

GTB RESORT & SPA & TURTLE CREEK 5000 KW CHP GTB RESORT 53500						
Wood Fired Steam CHP	50 MMBTU Peak			New Turtle Creek		10000
						ô
Peak Wood Heat Output (million BTU)		50	mmbtu	Annual Heat Load Requir. (mmbtu)		63,000
Wood Fuel Cost per ton	\$		/US ton	Heat Output mmbtu/year		89.352
Peak Electric Capacity (kW)	•	5.000		Heat Cost per mmbtu	ŝ	2.23
Electric CHP Operating Capacity Factor %		34%		Total Heat Fuel Cost/yr		199,625
Utility Electric Sale Price \$/kW-hr	\$	0.050	/kW-hr		•	,
Local Electric Sale Price (to self) \$/kWh	š	0.060	/kW-hr	Heat Only \$/mmbtu (w/capital & O&M)	\$	8.34
Thermal Heating Capacity Factor %	NA.		CF	Heat Energy \$/mmbtu (fuel only)	\$	2.23
Thermal Heating Sales Price \$/mmBTU	\$	5.00	mmbtu	w · · · · · · · · · · · · · · · · · · ·		
•	-			N. Gas Cost \$/mmbtu @75% eff.	\$	10.00
CAPITAL COSTS						
Wood Fired Unit at Site w/ Boller & storage	\$6,50	00,000		Thermal Heat Sales @75%NG Cost	\$	670,140
Mechanical Interconnection	\$4,000,000			Total Electric Expense per/yr	\$	572,437
Steam Turbine		\$0		Electric Output kW-hrs/year		14,892,000
Building Retrofit & Prep	\$200,000			First Year Electric Cost per kW-hr	\$	0.038
Utility Interconnection witransformer	\$200,000			Electricity kWh/yr Available for Sale		(3,708,000)
Engineering & Development	\$80,000			Value of Excess Electyr at \$.06/kwh	\$	(222,480)
Legal & Financial Expense	\$2	20,000				,
TOTAL CAPITAL COST	\$11,00	00,000		Local Consumption Electric kWh		18,600,000
				Percent Local Electric to Total Gen.		125%
COST SUMMARY ANALYSIS				Natural Gas Cost/CCF	•	1.00
Installed Capital Cost		00,000		Energy Cost to Electric kW-hr Price	\$	572,437
First Year Fuel, O&M & Admin Cost		72,577	(assumes thermal energy sold at 75% NG)		
First Year Capital Recovery Cost		70,000				
First Year Expense (Debt & O&M)	\$1,24	42,577		Exess Heat and Electric Sales	\$	447,660
Installed Cost per KWe	\$	2,200				
Installed Cost per kW-hr/yr	\$		/kW-hr			
First Year Cost per kW-hr w/o REPI	\$	0.038	/kW-hr			
First Yr Cost per kWh wiREPI	\$	0.020	/kW-hr	Energy Efficiency		
				Total Wood Fuel Energy in mmbtu/yr		148,920
				Heat Output mmbtu/year		89,352
First Year Operating Cost Data	A	10 700	Percent	Electric Output kW-hrs/year		14,892,000
Fuel	\$ 33	32,708	26.8%	Electric Output mmbfu/yr		50,826
Rent	,	-	0.0%	Thermal Efficiency		0.001
Admin O&M		29,784	2.4%	Thermal Efficiency		60%
Taxes	9 (89,460	7.2% 0.0%	Electric Efficiency Total Efficiency		34%
Insurance		20 625	1.7%	Total Elliciency		
Capital Recovery		70.000	62.0%			
	\$ 1.24			Total O&M & K Cost less Excess Sale	ŝ	794,917
Note: Discount Rate for Present Value Calc.	4 1/2	5.0%		Present Total Costlyr & T.Ck & GTR	ě	1.866,000
none, proposite name for president value care.		3.0%		Net Annual Savings	š	1,071,083
				not Annual Savings	•	.,011,000

Energy Efficiency Review

Total Tribal non-residential cost of energy \$2 million +

10% - 20% potential savings \$200,000 to \$400,000 per year suggest investment of \$1 to \$2 million easily justified

Top measures to consider:

- Lighting upgrades: T8's, controls, CFL's, LED's
- HVAC system retrofits

- Outreach to Tribal Members & Outside Community
- Articles in GTB newsletter, local newspaper, community forum
- Educational Brochure: "Sovereignty" The Path to Energy Independence

Power Market Assessment - Muni's & Cooperatives

Transmission & Interconnection Discussions with Local Utilities

Technical Issues

Power Market Assessment

- Small scale: net metering
- GTB Self-supply
- TCL&P & MPPA green power supply
- Wolverine Power (Cherryland), CE, etc.
- Renewable Energy Production Incentive Payment (REPI)
 10 yr 2 cents/kW-hr
- Carbon credits, green tags, Native Energy
- New policy initiatives: Feed-in-tariffs (FIT)
 - Renewable priority to the grid
 - Each renewable technology priced to make a market
 - Long-term (20 year) guaranteed prices
 - Added costs spread over entire customer base

- Environmental Evaluation
- Benefit Assessment
- Preliminary System Design
- Long-Term O&M Plan
- Business & Organizational Planning
- Financing Plan

Future Plans

- Council guidance on what, where & when
- GTB energy organization?
- Set policy for:
 - Homes: Solar thermal, solar PV, small district heat, energy efficiency services
 - Government: Larger scale biomass district heat, solar PV, wind power, efficiency
 - Commercial: Large wind power, solar, biomass district heat. Begin wind permitting at GT Resort?
 - Economic Development: Commercial wind power, regional biomass district heat

Thank you!

Suzanne McSawby GTB Natural Resources Mgr.