
Alternative Metal Oxide Supports for Cathode Catalyst Powder in Automotive PEMFCs

Jim Waldecker (Ford Motor Company) presenting on behalf of...

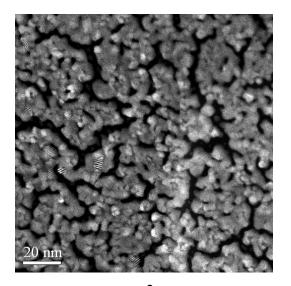
Jun Yang,^a

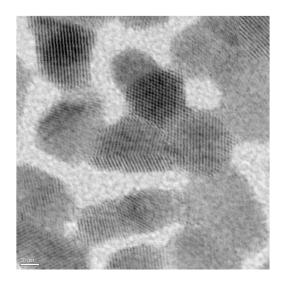
Chunchuan Xu,^a Kerrie Gath,^a Patrick Pietrasz,^a Rick Soltis,^a Ben Pence,^a M. Jagner,^a Kai Sun,^b Guangnan Meng,^c Evan Sohm,^c Qingying Jia,^d Sanjeev Mukerjee^d

- Ford Research and Innovation Center, Ford Motor Company, Dearborn, MI 48124.
- Materials Science and Engineering Department, University of Michigan, Ann Arbor, MI 48109.
- c. ULVAC Technologies, Inc., 401 Griffin Brook Drive, Methuen, MA 01844.
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115.

ORR Catalysts: Activity and Durability

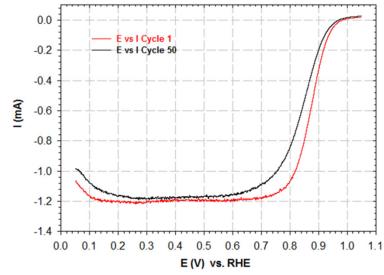
- Cost and durability: primary vehicle-related barriers to fuel cell vehicle commercialization
 - State-of-the-art fuel cell MEAs use higher loading than the published 2020 DOE target of 0.125 mg_{pt}/cm²
 - Life-limiting failure modes are commonly associated with the cathode catalyst layer: Pt or Pt alloy dissolution / agglomeration, support corrosion
- How can the specific activity (uA/cm²_{Pt}) of Pt for ORR be increased?
 - Alloy that compresses Pt-Pt distance (ensemble effect)
 - Alloy/other species that donates e⁻ to the Pt site (ligand effect)
 - Added species that helps with O adsorption
 - Better coordination of Pt (<u>extensive surface</u>, alternative particle shape, larger particle)
 - Optimized crystallite surface
 - Removal of poisons (e.g. sulfate or sulfonate anions)
 - Improved proton transport from ionomer/water to Pt surface
- Besides specific activity increases, how can the mass activity (A/g_{Pt}) of Pt for ORR be increased?
 - Minimize atomic layers (conformal coating, core-shell)
 - High surface area support

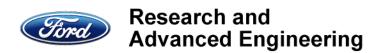



Concepts for extensive Pt surfaces on stable substrates...

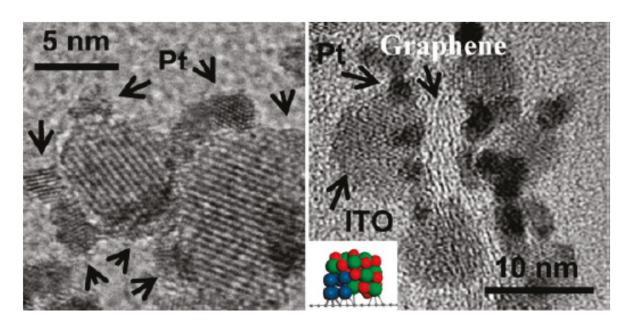
FLAT SAMPLES

Is It Possible to Generate 2-D Connected Pt Network at Low Pt Loading?





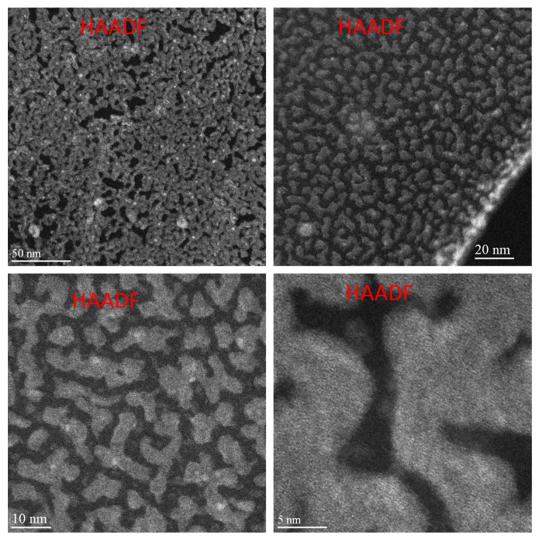
Magnetron sputtering of 24 Å Pt (nominal) on graphene can yield a 2-D connected Pt network...

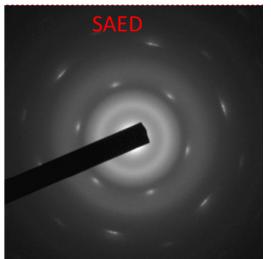

GC+2.4nm Pt stability test 20mV/s Rate 1600rpm 50 cycles

...But it is not durable. After 50 RDE cycles (0.1-1.05 V), activity deteriorates.

Stabilizing Pt on Graphene

In-Sn-O is a conductive metal oxide, which has been used successfully in stabilizing Pt nanoparticles (6 atom clusters) on graphene as ORR catalyst, with enhanced activities.


Kou et al., J. Am. Chem. Soc. **133** (2011) 2541-2547

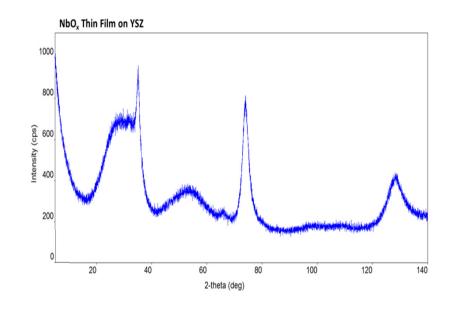

Two issues:

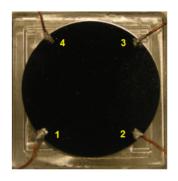
- ITO is not durable in PEMFC working conditions
- Wet chemical method used to produce stabilized Pt nanoparticles

Can we find other *conductive stable oxides* (in fuel cell) that increase activity and facilitate the durability of the ORR catalysts?

Amorphous Conductive NbO_x Deposited onto Graphene

30 Å NbO_x grows into amorphous, isolated, worm-shaped islands on graphene


HAADF = high-angle annular dark field TEM SAED = selected area electron diffraction



NbO_x Films: Amorphous and Conductive

NbO_x deposited in same manner on single crystal YSZ

XRD showed that the deposited film of NbO_x on single crystal YSZ is amorphous.

Van der Pauw Equation and Technique

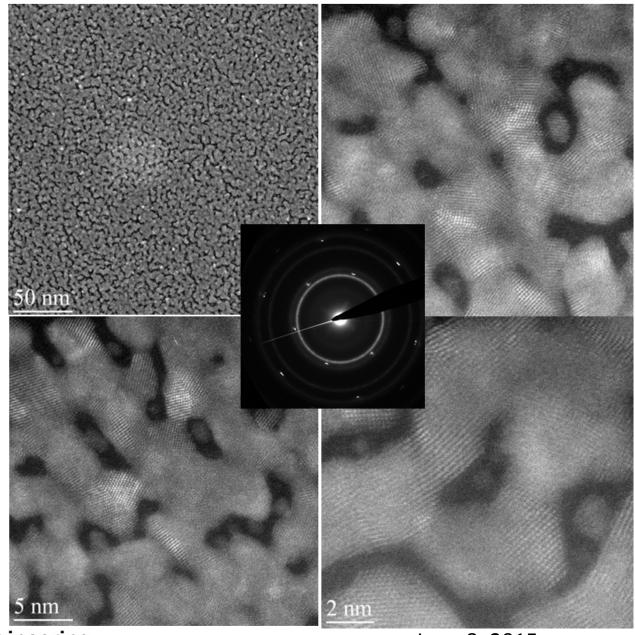
$$exp(-\frac{\pi \cdot R_a}{R_s}) + exp(-\frac{\pi \cdot R_b}{R_s}) = 1$$

The sheet resistance Rs can be obtained from the two measured characteristic resistance Ra and Rb

$$R_a = \frac{V_{14}}{I_{23}} \qquad \qquad R_b = \frac{V_{34}}{I_{12}}$$

Conductivity
$$\sigma = \frac{1}{\rho} = \frac{1}{R_S t}$$

NbOx (x=2.0
$$^{\sim}$$
2.5)
At RT (22 $^{\circ}$ C), $\sigma = 0.089 \ S/m$
At 80 $^{\circ}$ C, $\sigma = 0.22 \ S/m$


Graphite
$$\sigma_{//}=2.0{\sim}3.0\times10^5\,S/m$$

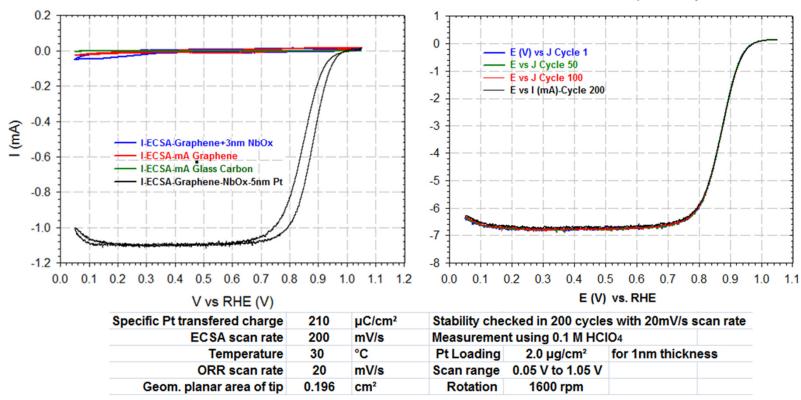
$$\sigma\perp=3.3\times10^2\,S/m \qquad \perp \text{ basal plane}$$

Amorphous NbO_x is electronically conductive, but has 3 orders of magnitude less conductivity than graphite perpendicular to the plane.

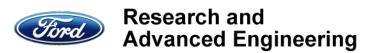
30 Å NbOx Templates 24 Å 2-D Connected Pt

Network

Further coating of 24 Å Pt onto the 30 Å a-NbO_x / graphene forms a 2-D connected Pt network

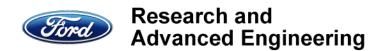

Research and Advanced Engineering

June 8, 2015

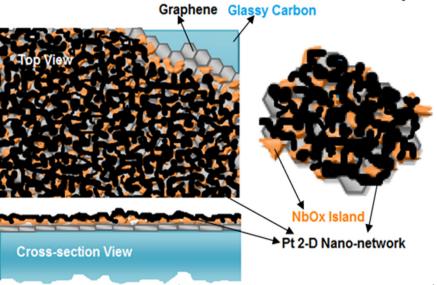

High Activity and Durability of 24 Å Pt on 30 Å NbOx on Graphene

- Exhibiting Pt bulk activity and high mass activity with improved durability

GC+Graphene+NbOx+2.4 nm Pt 20mV/s Rate 1600rpm 200 cycles



Sample	Roughness	J	J_k	Mass Activity
		(μA/cm²)	(μA/cm²)	(A/g- _{Pt})
24 Å Pt on 30 Å NbO _x on graphene on glassy carbon	0.9	1765	2377	495
24 Å Pt on graphene on glassy carbon	1.2	1562	2192	456
24 Å Pt on glassy carbon	1.3	1058	1345	280


Converting flat sample activity and stability into practice...

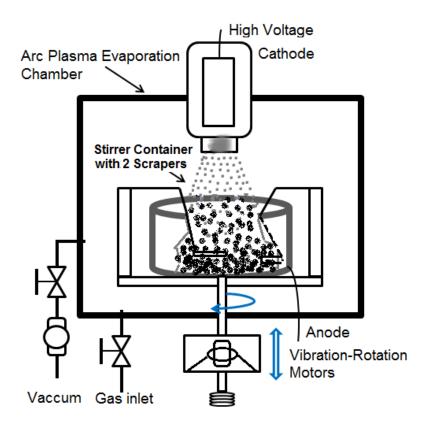
POWDER SAMPLES

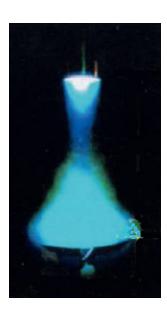
Implementing Concept ORR Catalysts onto Graphitic Carbon Powders

2-D connected Pt-network on a-MOx concept

The industry convention is to incorporate ORR catalyst powders into ink, so powders are preferred

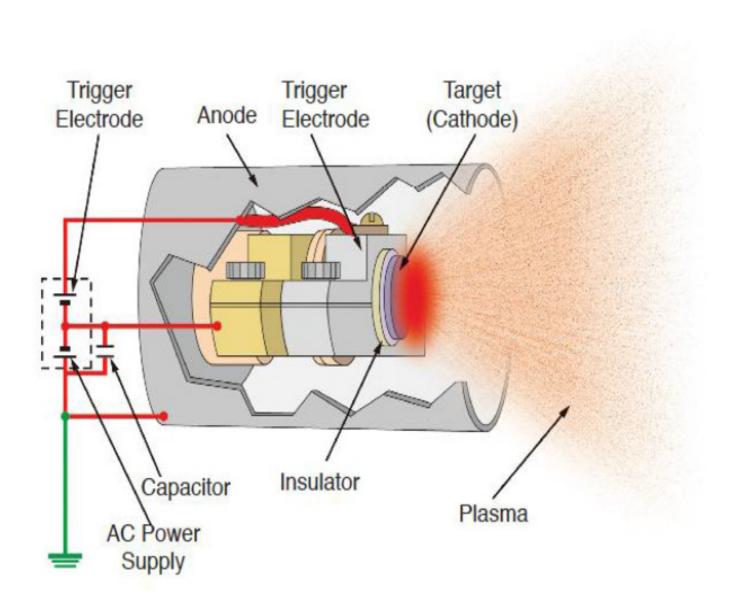
2-D connected Pt-network templated by a-MOx on graphitic carbon powders




The challenge is implementing the desired amorphous NbO_x templated Pt 2-D connected network onto individual graphitic carbon nanopowders

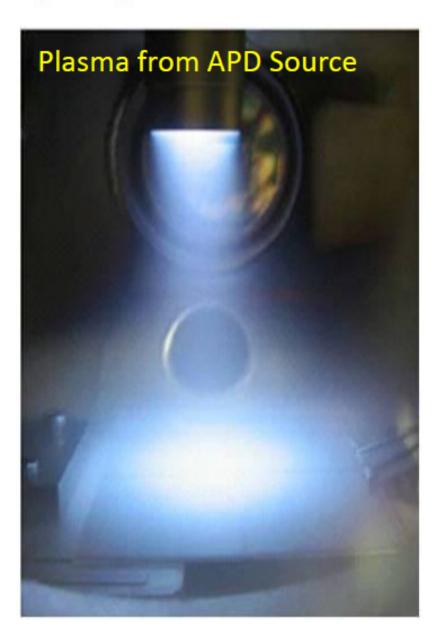
Challenges in Coating Carbon Nano-powders

- It is challenging to flow the graphitic carbon nano-powders using ultrasonic vibration, so a mechanical way has to be adopted to agitate the powders for sputtering. The deposition of NbOx onto carbon powders tends to agglomerate the nano-powders, so an effective powder breakup system has to be in place.
- ULVAC has an APD sputtering system, that can heat up the powder to 350 °C, flowing the powders, and breaking up the agglomerated powders, with 3 sputtering guns under a vacuum of 10⁻⁶ Torr.

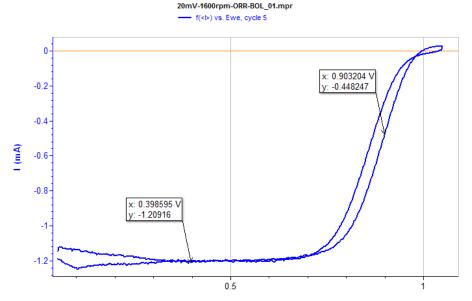


June 8, 2015

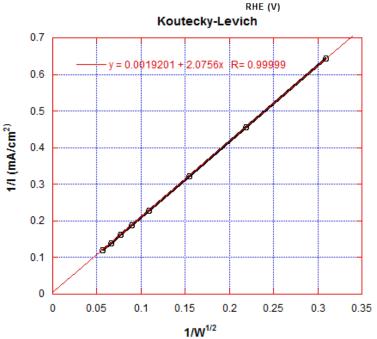
Arc Plasma Deposition (APD) Source

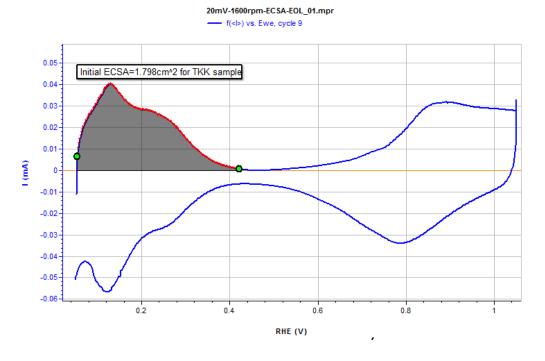

Arc Plasma Deposition (APD) Source

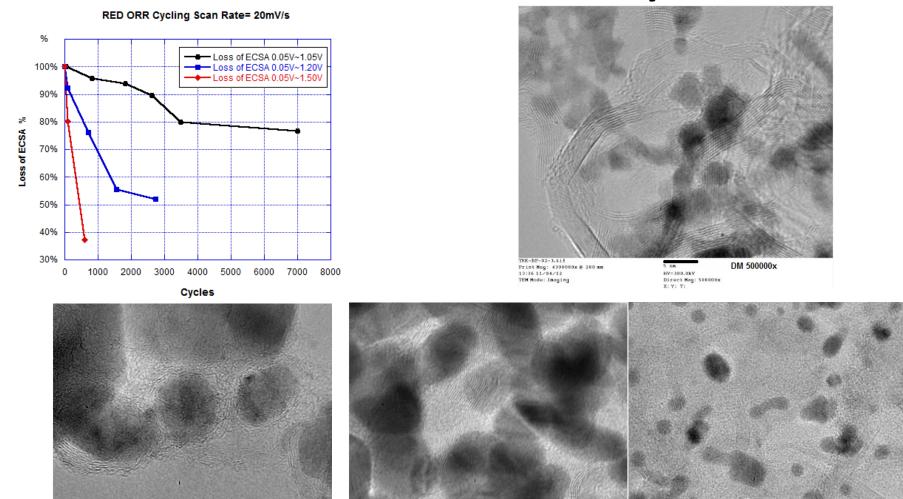
New Tube Target



Used Tube Target




Baseline: TKK EA50 Catalysts


TKK Catalyst 46.8% (C/Pt) Loading about 16.0 ug/cm²

Initial
ECSA ~ 58.10 m²/g
Mass activity ~ 200 A/g_{pt}
Specific activity ~300 uA/cm²

Baseline: TKK EA50 Catalysts

7000 Cycles in O2 0.05 to 1.05V, Pt increases 3 to 5 times

2700 Cycles in O2 0.05 to 1.2V, Pt increases 3 to 5 times

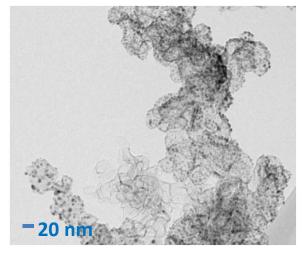
HV=300.0kV Direct Mag: 500000x

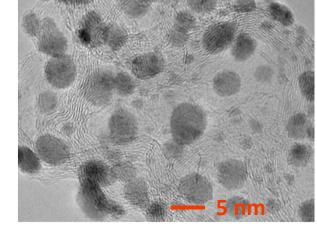
A5-BF-04.tif Print Mag: 4390000x @ 200 mm 14:15 11/04/12 TEM Mode: Imaging

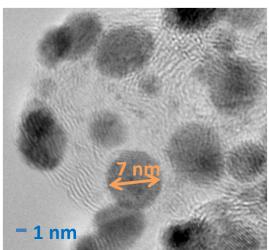
620 Cycles in O2 0.05 to 1.5V, Pt increases 2 to 3 times

Research and Advanced Engineering

June 8, 2015


APD Deposition of Pt on Graphitic Carbon

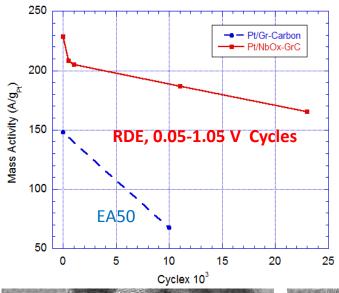

20K pulse Pt/C: 20% ECSA loss after 4000 0.05-1.05 V cycles

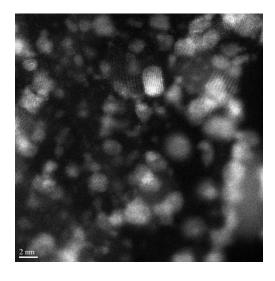

		4000
	EOL	cycles
Total Pt Loading (ug/cm²)	9.48	9.48
ECSA (m ² /g)	82.76	66.27
ORR I@ 0.4V (mA)	1.138	1.138
ORR I@ 0.9V(mA)	0.424	0.395
Roughness	7.8	6.3
Specific Activity (mA/cm²)	0.442	0.493
Mass Activity (A/gPt)	366	327

40K pulse Pt/C: 17% ECSA loss after 2500 0.05-1.05 V cycles

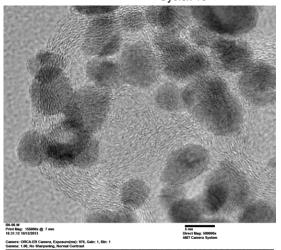
		2500
	BOL	cycles
Total Pt Loading (ug/cm²)	23.36	23.36
ECSA (m ² /g)	46.51	38.65
ORR I@ 0.4V (mA)	1.171	1.176
ORR I@ 0.9V(mA)	0.553	0.505
Roughness	10.9	9.0
Specific Activity (mA/cm²)	0.492	0.500
Mass Activity (A/gPt)	229	193

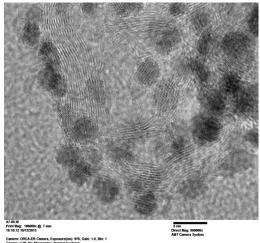
40K pulse sample as-made


40K pulse sample as-made


3200 cycles

As with TKK EA50, the APD Pt on graphitic carbon is not stable


Sequential Deposition of 20K NbO_x and 20K Pt



As made 20K NbO_x, 20K Pt powders

Pt pinned by amorphous NbO_x as deposited, partially formed 2-D connected network.

10K 0.05-1.05 V cycles: Pt particle size increase, but mostly still pinned by NbO_x

10K 1.0-1.5 V cycles: stable

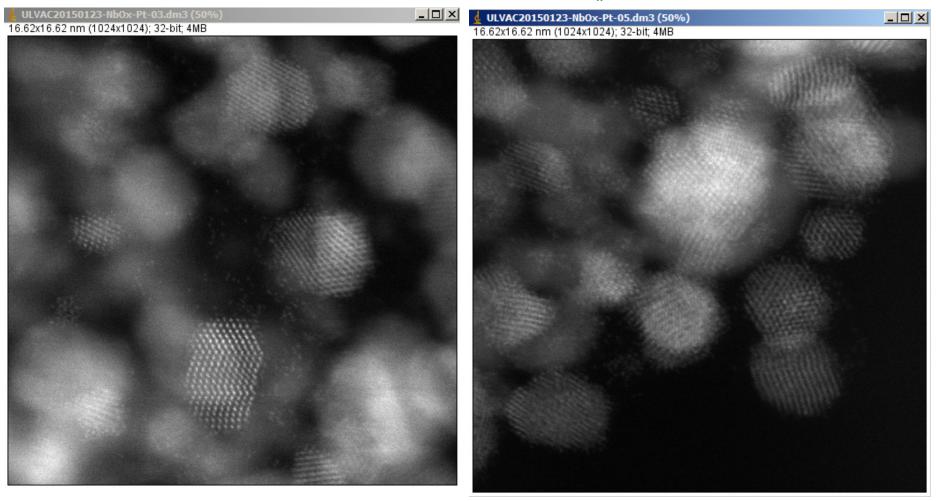
10K 0.05-1.05 V Cycles

10K Cycle 1.0-1.5 V SW Cycles

Further Improving the Activity

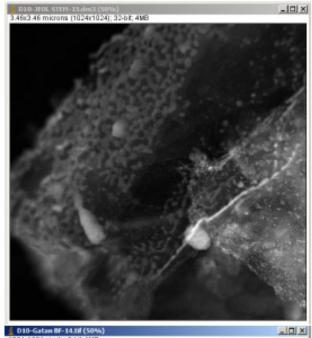
Sample	Pt loading Wt. %	Roughness (cm²/cm²)	ECSA(m ² /g)	SA (μA/cm²)	MA(A/g _{pt})
Baseline Pt/GC	47.00%	9.37	49.4	311	153
2.4APt/NbOx/GR/GLC (flat)	2.4 nm*	1.10	22.9	2377	495
2.4APt/NbTiOx/GR/GLC (flat)	2.4 nm	1.29	25.1	2416	606
APD Pt/GC	8.99%	1.19	28.4	749	213
APD Pt/GR	10.50%	1.65	27.1	871	235
APD Pt/NbO _x /GC	19.70%	4.58	37.1	790	293
APD Pt/NbOx/GC	7.54%	2.26	34.0	604	296
APD Pt/NbO _x /GR	10.50%	2.10	34.3	1003	345
APD Pt/NbO _x /GR-L	3.93%	1.01	33.6	1178	391

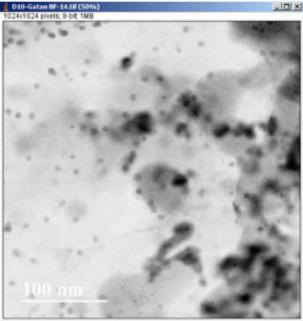
Specific activity of Pt/NbO_x/C ORR catalyst on **graphitic carbon (GC)** is about **800**, on **graphene (GR)** about **1200** μ A/cm². Their respective mass activities are about **300** and **400** A/g_{Pt}.

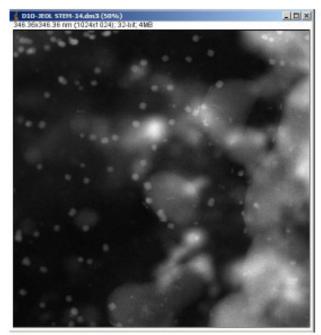

Specific activity on flat sample was 2400 μ A/cm² and mass activity was 600 A/g_{Pt}.

The achieved specific activity indicates that the 2-D Pt network is not fully formed yet

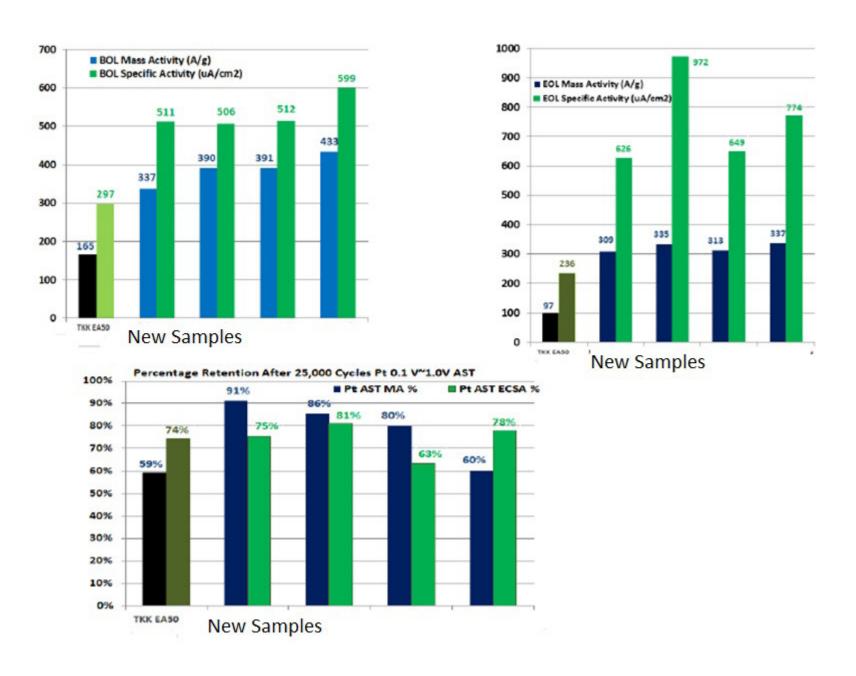
Further Increasing The Specific Activity and Durability

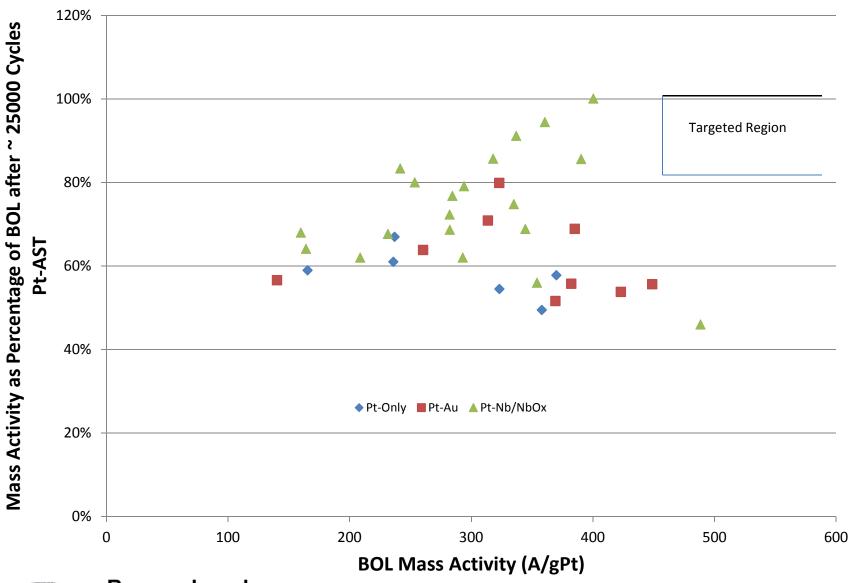

Using graphene powders and increasing the NbO_x concentration




With higher loading of NbO_x (12 wt.%), and with NbO_x forming 2-D connected network, about 5 wt.% of Pt is needed to start forming 2-D connected network with improved specific activity and mass activity

How a-NbOx Enhances Durability





a-NbOx pinned down Pt, preventing excessive agglomeration, probably due to its intermediate surface energy in between those of Pt and Carbon

Further Improvements on Activity & Durability

Further Increasing The Specific Activity and Durability - Using graphene powders and increasing the NbO_x concentration

Research and Advanced Engineering

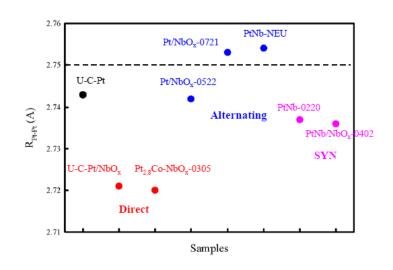
June 8, 2015

But why would the activity increase?

XAS AND DFT STUDIES

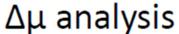
What Contributes to the Improved Activity and Durability

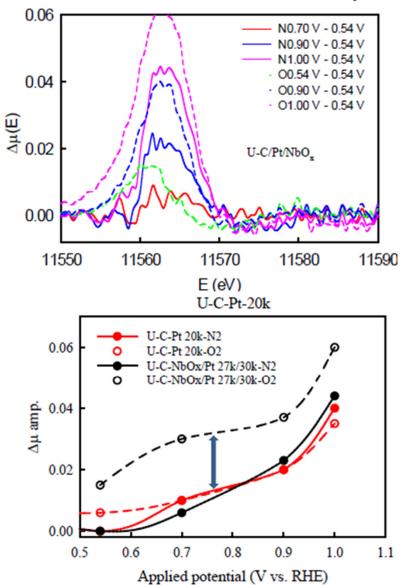
 Pt/NbOx/GC
 Pt/GC

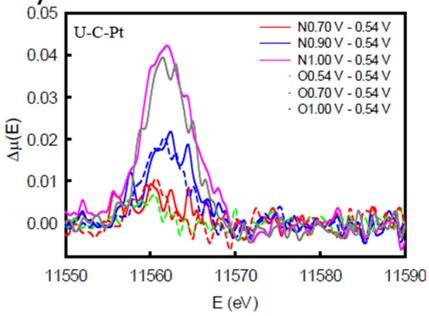

 R Pt-Pt (Å)
 2.721
 2.740

 R Pt-Nb (Å)
 2.737
 8.3

 N Pt-Pt
 6.5
 8.3


 N Pt-Nb
 0.5
 8.3


Pt-Pt bond distance



Amorphous NbO_x intrinsically changed the atomic environment of Pt in the ORR catalyst, reducing the Pt-Pt distance (**favorable for activity**) but also lowered the nearest neighbor of Pt. This phenomena is consistent for graphitic carbon or graphene.

Δμ Analysis at NEU

- Reduced OH coverage on Pt-NbO_x compared to Pt was not observed, in line with previous Pt-NbO_x samples.
- OH coverage on Pt in N₂ and O₂ are about the same.
- OH coverage on Pt-NbO_x in O₂ is higher than that in N₂.

OH coverage on Pt-NbOx in O₂ is higher that that in N₂, indicating better activity with amorphous NbOx

DFT Modeling at NWU

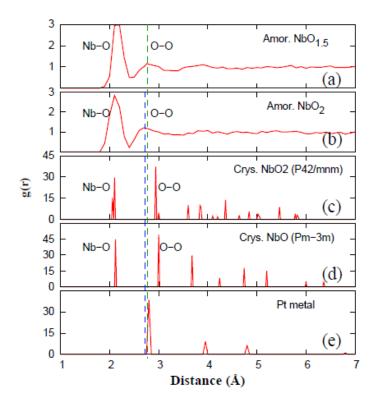
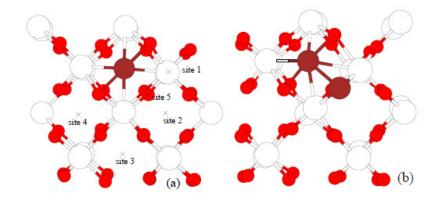



Figure 4: Comparison of radial distribution function of amorphous NbO_{1.5}, amorphous NbO₂, crystal NbO, crystal NbO₂, and Pt metal.

Amorphous NbO_x leads to shorter O-O distances than in crystalline NbO_x

DFT modeling indicates Pt prefers to sit on top of O sites in amorphous MOx (b) than in crystalline (a) of the same composition

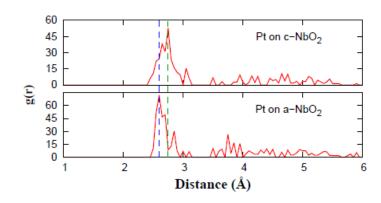


Figure 3: Comparison of radial distribution function of Pt metal on amorphous NbO₂ and crystalline NbO₂.

Amorphous NbO₂ should lead to shorter Pt-Pt distances versus crystalline NbO₂

Summary

- A novel ORR Catalyst for PEMFC has been developed using amorphous stable NbOx wormshaped islands to template a thin layer of Pt, forming 2D connected Pt network. This microstructurally engineered ORR catalysts posses high specific and mass activity and much improved durability.
- ULVAC APD sputtering with stirring and powder breakage mechanism has been used in replicating this ORR concept onto graphitic carbon and graphene powders of 30 to 50 nanometers, achieving a mass activity of about 400 A/g-Pt and a mass activity retention of more than 90% after 25000 Pt-stress cycles at 0.1-1.0 V V Pt-stress tests in 0.1M HClO4 acid. However, the specific activity is not up to those achievable for Pt 2D connected network. Room still exists for further improvements.
- The improved durability of the novel ORR catalysts comes from the pinning effects of a-NbOx on Pt due to its surface energy in between those of Pt and graphitic carbon.
- The amorphous NbOx has shorter O-O distance compared to its crystalline counterpart, which in turn dictates the Pt-Pt distance shorter, enhancing the ORR activity.