



This presentation does not contain any proprietary, confidential, or otherwise restricted information

### Non-Platinum Group Metal OER/ORR Catalysts for Alkaline Membrane Fuel Cells and Electrolyzers

P. I. Name: Nemanja Danilovic

Chris Capuano and Kathy Ayers

Organization: Proton OnSite

Date: May 15, 2015 (presented)

August 5, 2015 (updated)

Project ID: FC-133

### Overview Timeline

- Project Start: 15 Feb 2015
- Project End: 15 Nov 2015
- Percent complete: ~85%

### Budget

Total project funding
 DOE share: \$150,000

### **Partners**

- Rutgers University:
  - Charles Dismukes (PI)
  - Graeme Gardner
  - Karin Calvinho

### **Barriers**

Barriers addressed

G: Capital Cost (Electrolyzer + Fuel Cell)

| Table 3.4.7.a Technical Targets: Portable Power Fuel Cell Systems (<2 Watt) <sup>a</sup> |                      |       |                 |                 |  |  |  |  |
|------------------------------------------------------------------------------------------|----------------------|-------|-----------------|-----------------|--|--|--|--|
| Characteristic                                                                           | Units 2011<br>Status |       | 2013<br>Targets | 2015<br>Targets |  |  |  |  |
| Specific power <sup>b</sup>                                                              | W/kg                 | 5     | 8               | 10              |  |  |  |  |
| Power density <sup>b</sup>                                                               | W/L                  | 7     | 10              | 13              |  |  |  |  |
| Specific energy <sup>b,c</sup>                                                           | Wh/kg                | 110   | 200             | 230             |  |  |  |  |
| Energy density <sup>b,c</sup>                                                            | Wh/L                 | 150   | 250             | 300             |  |  |  |  |
| Cost <sup>d</sup>                                                                        | \$/system            | 150   | 130             | 70              |  |  |  |  |
| Durability <sup>e,f</sup>                                                                | hours                | 1,500 | 3,000           | 5,000           |  |  |  |  |
| Mean time between failures <sup>f.g</sup>                                                | hours                | 500   | 1,500           | 5,000           |  |  |  |  |

| Table 3.1.4 Technical Targets: Distributed Forecourt Water Electrolysis Hydrogen<br>Production <sup>a, b, c, l</sup> |                |                               |                               |                    |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------|-------------------------------|--------------------|--|--|--|
| Characteristics                                                                                                      | Units          | 2011<br>Status                | 2015<br>Target                | 2020<br>Target     |  |  |  |
| Hydrogen Levelized Cost <sup>d</sup> (Production<br>Only)                                                            | \$/kg          | 4.20 <sup>d</sup>             | 3.90 <sup>d</sup>             | 2.30 <sup>d</sup>  |  |  |  |
| Electrolyzer System Capital Cost                                                                                     | \$/kg<br>\$/kW | 0.70<br>430 <sup>e, r</sup>   | 0.50<br>300 <sup>r</sup>      | 0.50<br>300 '      |  |  |  |
| System Energy Efficiency <sup>g</sup>                                                                                | % (LHV)        | 67                            | 72                            | 75                 |  |  |  |
|                                                                                                                      | kWh/kg         | 50                            | 46                            | 44                 |  |  |  |
| Stack Energy Efficiency <sup>h</sup>                                                                                 | % (LHV)        | 74                            | 76                            | 77                 |  |  |  |
|                                                                                                                      | kWh/kg         | 45                            | 44                            | 43                 |  |  |  |
| Electricity Price                                                                                                    | \$/kWh         | From AEO<br>2009 <sup>1</sup> | From AEO<br>2009 <sup>1</sup> | 0.037 <sup>1</sup> |  |  |  |





### **Project Goal- Phase 1**

- Anion exchange membrane (AEM) based unitized regenerative fuel cell (URFC)
- Non-platinum group metal (PGM)-based oxygen electrode





### Relevance

- Stacks are the largest cost components of RFCs
  - Integrated approach should make significant \$ impact
- Precious metal content
  - Decrease or eliminate PGM metals in electrodes
- Membrane electrode assembly cost
  - Anion exchange (AEM) vs proton exchange (PEM) membranes
- Balance of stack component cost
  - Reduction in cost using stainless steel vs valve metal components







### Approach

- Catalyst (Rutgers):
  - Based on cubic LiCoO<sub>2</sub>
  - Tune OER/ORR activity by varying A and B site dopants
- AEM-URFC cell (Proton)
  - Water management
  - Flowfield
  - Wetproofing
  - Catalyst layer integration



Water management optimization



**Flowfield Design** 





**Preliminary data on LiCoO**<sub>2</sub>



### **Objectives**

| Task description and significance achievements                            | Completion |
|---------------------------------------------------------------------------|------------|
| Cubic phase $LiBCoO_2$ (B=Mn <sup>+</sup> , etc) synthesized and screened | 100%       |
| Electrochemical screening of synthesized materials in RDE                 | 75%        |
| Development of URFC cell                                                  | 100%       |
| Optimization of flowfields for fuel cell and electrolysis operation       | 75%        |
| Baselining PGM catalyst materials in fuel cell and electrolysis           | 100%       |
| Evaluation of non-PGM O <sub>2</sub> electrodes                           | 75%        |
| Durability testing of non-PGM O <sub>2</sub> electrodes                   | 100%       |





# **Technical Accomplishments**

- Catalyst Development
  - Synthesis, performance and reproducibility at 5 grams verified at Proton for LiCoO<sub>2</sub>
  - Multiple A and B-site doped ABCoO<sub>2</sub> (A=Mg, Zn; B=Mn) synthesized and characterized by RDE

### Cell Development

- Defined flowfield geometry and fabricated stainless steel hardware for  $O_2$  side.
- Flowfield optimization and wet proofing conducted

### URFC Testing

- Baseline performance obtained in fuel cell and electrolysis mode for Pt | Pt catalyst (PGM baseline)
- Baseline electrolysis performance for LiCoO<sub>2</sub> and 1300 hrs stability test completed
- Preliminary Fuel cell and electrolysis data obtained for LiCoO<sub>2</sub>



# **Technical Accomplishments: Synthesis**

• Sol-gel synthesis employed for high phase purity and higher surface area catalysts

# $(b) - LT-LiCoO_2$ $(b) - LT-LiCoO_2$ $(a) - HT-LiCOO_2$ $(a) - HT-LiCOO_2$ $(b) - LT-LiCOO_2$ $(b) - LT-LiCOO_2$ $(c) - HT-LiCOO_2$ $(c) - HT-LiCOO_2$

#### **Sol-Gel Synthetic Routes**

 $\begin{array}{c} \mathsf{Li}_2\mathsf{NO}_3 + \mathsf{Co}(\mathsf{NO}_3)_2 + \\ \mathsf{CH}_4\mathsf{N}_2\mathsf{O}(\mathsf{urea}) + \\ \mathsf{C}_6\mathsf{H}_8\mathsf{O}_7(\mathsf{citric} \mathsf{acid}) + \\ \mathsf{H}_2\mathsf{O} \end{array}$ 



9 C C

Solid State Synthesis  $Li_2CO_3 + CoCO_3$  (grinding)

400 °C, 72 hr.

800 °C, 12 hr.







# Technical Accomplishments: Non-PGM OER/ORR catalysts

- Synthesized well-defined non-PGM O<sub>2</sub> catalysts based on LiCoO<sub>2</sub> and LiMn<sub>2</sub>O<sub>4</sub> families
  - Large batches by sol-gel method achieved high surface area
- Tuned OER and ORR activity by B site substitution
  - $\text{LiMn}_{2-x}\text{Co}_{x}\text{O}_{4} (0 < x < 1.5)$





# Technical Accomplishments: Non-PGM OER Performance Screening



- Anode DI water or bicarbonate feed
- Equivalent Pt cathodes
- Improved performance over baseline anode catalyst





# Technical Accomplishments Non-PGM O<sub>2</sub> Catalyst Durability Test



- 28cm<sup>2</sup> cell commercial platform
- Stainless steel and carbon BOP
- 1wt% KHCO<sub>3</sub> anode feed

36L

- Cumulative run time of 1300 hrs
- Apparent drift at high current densities







# Technical Accomplishments: URFC cell baselining - Electrolysis

- 25cm<sup>2</sup> non-proprietary cell platform
- Deionized water feed on the anode side (O<sub>2</sub> electrode)
- Baseline vs conventional PGM anode catalyst
- Little difference at higher current densities points to other rate limiting steps



# Technical Accomplishments: URFC cell baselining – Fuel Cell



- 25 cm<sup>2</sup> non-proprietary cell platform
- Underhumidified H<sub>2</sub>, overhumidified O<sub>2</sub>: high flow rates





# Technical Accomplishments: URFC cell baselining – Fuel Cell

AEMFC Stability test, 25cm<sup>2</sup> stack, 35 °C @ 50mA/cm<sup>2</sup>



### Rutgers non-PGM cycling data



Potential vs RHE / V

Rutgers evaluated ORR and OER activity of two non-PGM oxide compounds. Meets OER and ORR, RDE technical targets.
Initial sweep direction affects activity OER -> ORR vs ORR -> OER
Electrolysis followed by fuel cell testing is better than fuel cell followed by electrolysis





# Electrode and cell configurations fabrication

- 25cm<sup>2</sup> test stacks that integrates baseline data and cell design:
  - Serpentine flow channels H<sub>2</sub> and O<sub>2</sub> electrodes
  - Stainless steel serpentine flow channel fabricated, and passivated. Used for cycling tests.
  - Teflonized carbon paper and teflonized Ti porous plate
     GDLs used to improve water management





### LiCoO<sub>2</sub> anode



Before and after FC test, denotes first electrolysis test followed by fuel cell testing, then electrolysis again
Meets OER technical target in MEA configuration





# FC polarization curve

#### AEMFC Polarization Curve 25 cm<sup>2</sup> Stack 35°C



Does not meets ORR technical target in MEA configuration that was based on PEM non-PGM materials (MYRD&D).
Propose new target as half of Pt baseline





### **Proton and Rutgers next steps**

- Improve MEA FC performance ORR
  - Focus on improving water transport through GDL
  - Evaluate improved cathode catalyst
- Promote advanced cathode catalyst to 28cm<sup>2</sup> retest with LiCoO<sub>2</sub> anode for long term stability
- Conduct 10 cycles using new cathode, LiCoO<sub>2</sub> anode (last remaining milestone)
- Rutgers:
  - Evaluate cycling effects on LiCoO<sub>2</sub>
  - Evaluating anion and cation dopants on ORR/OER activity





# More information

- AMR poster:
  - <u>http://www.hydrogen.energy.gov/pdfs/review15/fc13</u>
     <u>3\_danilovic\_2015\_p.pdf</u>



