MODULAR CONNECTION TECHNOLOGIES FOR SC WALLS OF SMRS

Sep 29, 2015

Amit H. Varma, Jungil Seo, Tom Bradt Purdue University

OUTLINE

- o SC Wall-to-Wall T Connection
- o SC Wall-to-Wall L Connection
- Benchmarking Analysis
- o SC Slab-to-Wall Connection
- Findings

SC WALL-TO-WALLT CONNECTION DESIGN PHILOSOPHY

- o Full-strength connection design philosophy
 - Develops the expected strength
- o Implementation of full-strength design
 - Two parts in SC wall jointsSC wall and SC wall joints
 - Desired failure mode
 - Flexural yielding (ductile) plastic hinges

SC WALL-TO-WALLT CONNECTION DESIGN PHILOSOPHY

- SC wall-to-wall joints in the CIS
 - Common joint configurations (T and L)
- o Implementation of full-strength design
 - The required joint shear strength
 - o Based on the force transfer mechanism
 - Calculation of the available joint shear strength
 - o ACI 349-06 equation
 - $\circ \gamma = 12$ for SC wall T-joints
 - $\circ \gamma = 8$ for SC wall L-joints
 - Verification is required

$$V_n = \gamma \sqrt{f_c'} A_j$$

Experimental Program

- Four full-scale SC wall T-joint shear specimens
 - T = 30 in.
 - To evaluate the influence of (i) the shear reinforcement ratio and (ii) The steel headed stud layout
 - Designed to undergo joint shear failure

Steel faceplate		Steel tie plate dimension		No. of tie	Shear
Specimen	thickness, t _p (in.)	Continuous SC wall	Discontinuous SC wall	plates in the Joint	Stud Layout
JS-T1-F	0.75	$3^{3}/_{4} \times 5/_{16}$ in.	$3^{3}/_{4} \times 1/_{2}$ in.	1	F
	0.72	74 11 / 16 1111	2 /4 /1 /2 //		
JS-T0-F	0.75	$3^{3}/_{4} \times {}^{5}/_{16}$ in.	$3^{3}/_{4} \times {}^{1}/_{2} \text{ in.}$	0	F
JS-T0-P	0.75	$3^{3}/_{4} \times {}^{5}/_{16} \text{ in.}$	$3^{3}/_{4} \times {}^{1}/_{2} \text{ in.}$	0	P
JS-T2-F	0.75	$3^{3}/_{4} \times {}^{5}/_{16}$ in.	$3^{3}/_{4} \times {}^{1}/_{2} \text{ in.}$	2	F

Experimental Program

• Material properties

Canadiman	Faceplates		Tie plates		Studs	Concrete, psi
Specimen	F _y , ksi	F _u , ksi	F _y , ksi	F _u , ksi	F _u , ksi	
JS-T1-F	58.6	83.9	60.4	69.1	74.0	6,473
JS-T0-F	58.0	77.0	62.7	73.5	80.9	6,402
JS-T0-P	58.0	77.0	62.7	73.5	80.9	6,502
JS-T2-F	58.5	78.6	62.7	73.5	80.9	6,504
						Avg = 6,502

Experimental Program

o Boundary conditions and joint shear force terms

Experimental Program

• Test-setup and loading protocol

Experimental Program

• Summary of experimental results

Specimen	Ultimate joint shear, kips	Shear strain at the ultimate joint shear	Governing failure mode	Event order in the Joint region
JS-T1-F	438.4	0.0049	Joint shear	Concrete crack ↓ Yielding of steel tie plate ↓ Extensive concrete cracking
JS-T0-F	455.5	0.0070	Joint shear	Concrete crack ↓ Extensive concrete cracking
JS-T0-P	427.8	0.0069	Joint shear	Concrete crack ↓ Extensive concrete cracking
JS-T2-F	431.6	0.0060	Joint shear	Concrete crack Vielding of steel tie plates Extensive concrete cracking

Experimental Program

• Joint shear – displacement response

- V_{njs}^{TEST} within the range of 426.7 454 kips
- Greater than $V_{njs}^{ACI-exp}$ (413 kips) by 3.1 10.3%.

Experimental Program

o Joint shear − shear strain response

JS-T1-F

500 400 300 200 100 Joint Shear, kips -100 -200 -300 Missing data points due to -400 -500 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 Shear Strain

JS-T0-F

JS-T0-P JS-T2-F

Experimental Program

• Crack pattern at the ultimate joint shear : all specimens

JS-T1-F

JS-T0-P

JS-T0-F

JS-T2-F

Benchmarking Analysis

- 3-D FE analysis for additional insights
- o Comparison with experimental results
- o ABAQUS explicit
 - The quasi static analysis
 - Shell (S4R) elements for steel, solid (C3D8R) elements for concrete, and Timoshenko beam elements (B32) for stud
 - Connector elements (CONN3D2)

• CEF concrete model

- Elastic in compression, Uniaxial tension strength and post-peak behavior defined in CEB-FIP mc 90 (1993)
- Element deletion to prevent excessive deformation

• Steel material model

- Multi-axial plasticity theory
- Idealized uniaxial stress-strain curve

Analysis Results

o Joint shear − displacement response

Benchmarking Analysis

Summary

Specimen	Ultimate joint shear, kips	Shear strain at the ultimate joint shear	Governing failure mode	Event Order in the Joint region
JS-T1-F	450.0	0.0157	Joint shear	Concrete crack ↓ Yielding of steel tie plate ↓ Extensive concrete cracking
JS-T0-F	418	0.0142	Joint shear	Concrete crack ↓ Extensive concrete cracking
JS-T0-P	455.4	0.0164	Joint shear	Concrete crack ↓ Extensive concrete cracking
JS-T2-F	465.6	0.0147	Joint shear	Concrete crack ↓ Yielding of steel tie plates ↓ Extensive concrete cracking

Experimental Program

- o One full-scale SC wall L-joint shear specimens
 - T = 30 in.
 - To experimentally investigate the joint shear behavior of SC wall-towall L joint
 - The same specimen design approach and test procedure from SC wall-to-wall T joint specimens

	G. 1.C. 1	Steel tie plate dimension		No. of tie	Shear
Specimen	Steel faceplate thickness, t _n (in.)	Continuous	Discontinuous	plates	Stud
	tillekiless, t _p (iii.)	SC wall	SC wall	in the Joint	Layout
JS-L-T0-F	0.75	$3^{3}/_{4} \times {}^{5}/_{16}$ in.	$3^{3}/_{4} \times {}^{1}/_{2} \text{ in.}$	0	F

Experimental Program

• Test-setup and loading protocol

Experimental Program

o Boundary conditions and joint shear force terms

Experimental Program

• Joint shear – displacement response

Ultimate joint shear, kips	Shear strain at the ultimate joint shear	Governing failure mode	Event order in the Joint region
261.7 (-) 290.3 (+)	- 0.0071 (-) 0.0089 (+)	Joint Shear Failure	Concrete crack Extensive concrete cracking Yielding of diaphragm plates

$$V_{njs}^{TEST} = 276 \text{ kips}$$
 $V_{njs}^{ACI-exp} (262.7 \text{ kips})$

Experimental Program

o Crack pattern at the ultimate joint shear

JS-L-T0-F

BENCHMARKING ANALYSIS

- Analysis results Specimen JS-T1-F
 - Joint shear displacement response

BENCHMARKING ANALYSIS

- Analysis results Specimen JS-T1-F
 - Stress and strain distribution

LE max S min **PEEQ** Total Time: 0.820005 Total Time: 0.820005 Total Time: 0.820005

BENCHMARKING ANALYSIS

- Analysis results Specimen JS-T1-F
 - Crack pattern

BENCHMARKINGANALYSIS

• Analysis results – Specimen JS-L-T0-F

Joint shear – displacement response

Joint shear – shear strain response

- o $V_{is}^{ACI349-06} = 262.7 \text{ Kips } (1.17\text{MN})$
- o $V_{is}^{FEM} = 292.3 \text{ Kips} (1.3 \text{ MN}) (+29.6 \text{ kips})$
- o $V_{is}^{Exp} = 276 \text{ Kips } (1.22 \text{ MN}) (+ 13.3 \text{ kips})$
- o Joint shear failure

BENCHMARKINGANALYSIS

- Analysis results Specimen JS-L-T0-F
 - Stress and strain distribution

SC SLAB-TO-WALL CONNECTION

Experimental Program

Background

- Existing design recommendations and aids for RC slab (column) to slab connections
- No existing design recommendation for SC slab-to-wall connection
- The applicability of existing code provisions for RC slab (column) to slab connection on SC slab-to-wall connection

Design philosophy

- The full strength connection design philosophy
- The connection region should not be the weakest point
- Capability of transferring both shear and flexural demand

SC SLAB-TO-WALL CONNECTION

Experimental Program

• Test parameters

- Slab type : RC or half SC (HSC)
- Rebar: rebar type (Hooked bar or T headed rebar), Reinforcement ratio, Embedded length, and Rebar location in the SC wall portion

SC SLAB-TO-WALL CONNECTION

Experimental Program

• Test setup

FINDINGS

• SC wall-to-wall T connection test

- The joint shear failure mode for all test specimens
- No significant effects of the shear reinforcement ratio and the steel headed stud layout
- V_{njs}^{TEST} within the range of 426.7 kips 454 kips Greater than V_{njs}^{ACI-} exp (413 kips) by 3.1% 10.6%
- The ACI 349-06 (2006) code equation is applicable and conservative for estimating the joint shear strength of SC wall-to-wall T joints with γ of 12

o SC wall-to-wall L connection test

- The joint shear failure mode
- V_{njs}^{TEST} of 261.7 kips close to $V_{njs}^{ACI-exp}$ (262.7 kips)
- The ACI 349-06 (2006) code equation is applicable for estimating the joint shear strength of SC wall-to-wall L joints with γ of 8

Publications

- Seo, J., Varma, A.H., and Winkler, D. (2013). "Preliminary Investigations of the Joint Shear Strength of SC Wall-to-Wall T-Joints." Transactions of SMiRT 22, IASMIRT, NCSU, Raleigh, NC, pp. 1-10.
 - http://www.iasmirt.org/transactions/22/Pap_863_ver_3.pdf
- Seo, J., and Varma, A.H. (2015). "Behaviour and Design of Corner or L-Joints in SC Walls." Transactions of SMiRT 23 in Manchester, UK, Paper ID 695, IASMIRT, North Carolina State University, Raleigh, NC, pp. 1-10, http://smirt23.uk/attachments/SMiRT-23-paper-695.pdf