Maximizing Energy Savings with New Technologies in Lighting and Lighting Controls

- High-end trim
- Controllable window shading
- Daylight harvesting
- Demand response
- Occupancy/vacancy sensing
- Scheduling
- Personal dimming control
- Appliance Control

Mike Matour, National Sales Manager - Energy
Lutron Electronics
Agenda

• FEMP Promising Technologies
• Today’s Lighting Controls
• Why Controls?
• New Technologies - Wireless Solutions
• New Technologies - Advanced Controls
• LEDs – How to control?
The Federal Energy Management Program’s (FEMP) Promising Technologies List provides information about promising new and underutilized energy-saving technologies available for Federal and commercial building sector deployment. To identify promising technologies, FEMP performed a rigorous analysis with the Prioritization Tool, an analytical tool developed by the Building Technologies Office (BTO). The BTO Prioritization Tool evaluates the energy savings potential of energy efficiency measures, and takes into account cost-effectiveness. FEMP has used the Prioritization Tool to identify 20 technologies with the largest potential for cost-effective energy savings if deployed throughout the Federal Sector.

For More information about the BTO Prioritization Tool, visit http://energy.gov/eere/buildings/prioritization-tool
Promising Technologies

Lighting
- Wireless Lighting Occupancy Sensors
- Parabolic Aluminized Reflector (PAR) Light-Emitting Diodes (LEDs)
- Parking Lot LEDs with Controls
- High Bay LEDs
- Retrofit Lights to LEDs in Refrigerators

Heating & Cooling
- Ground Source Heat Pumps
- High Efficiency Rooftop Units (RTUs)
- Magnetic Bearing Variable Speed Centrifugal Chillers
- Condensing Gas Boilers

Ventilation
- Demand Control Ventilation (DCV)
- Constant Air Volume (CAV) to Variable Air Volume (VAV) Ventilation
- Energy Recovery Ventilation (ERV)

Water Heating
- Condensing Gas Water Heaters
- Heat Pump Water Heaters
- Tankless Gas Water Heaters

Windows and Envelope
- R-5 Window Replacements
- Cool Roofs (.75 Solar Reflectance)
- Cool Paints for Exterior Walls

Other
- Ozone Laundry Systems for Multi-Clothes Washers
- Auto Sash Fume Hoods
Wireless Lighting Occupancy Sensors

Occupancy sensors and controls detect human presence, and modulate light settings accordingly. When there is no human presence detected, the system can dim or turn off lights. This technology ensures that lights are not used when there are no occupants present, which can lead to significant energy savings.

Technology Considerations

- There are multiple suppliers
- Optimal for buildings with long operating hours
- Applicable to any building type and location
- Has been shown to reduce lighting energy consumption 27% to 63%

- Site Energy Savings Potential for the Federal Sector (Trillion-BTUs) 6.9
- Avoided Carbon Dioxide Emissions Potential (Million-Tons) 1.2

Implementation of this measure across the Federal Sector would provide energy savings equivalent to the site energy consumption of 5,000 average sized office buildings.
Demand Control Ventilation (DCV)

DCV measures carbon dioxide concentrations in return air or other strategies to measure occupancy, and accurately matches the ventilation requirement. This system reduces ventilation when spaces are vacant or at lower than peak occupancy. When ventilation is reduced, energy savings are accrued because it is not necessary to heat, cool, or dehumidify as much outside air.

Technology Considerations

- There are multiple suppliers
- Applicable to all building types and locations, though savings will vary according to building characteristics and climate
- Has been shown to reduce energy costs 38% in an office building

• Site Energy Savings Potential for the Federal Sector (Trillion-BTUs) 14.4
• Avoided Carbon Dioxide Emissions Potential (Million-Tons) 1.4

Implementation of this measure across the Federal Sector would provide energy savings equivalent to the site energy consumption of 10,400 average sized office buildings.
Multi-Zone Lighting Controls
Advanced Lighting & HVAC Control Systems
Total Light Management
8 Simple Light Control Strategies / ECMs

Occupancy/Vacancy Sensing: Automatically turn lights off or dim down when space is vacant. Integrate HVAC locally/digitally.

Daylight Harvesting: Automatically adjust light levels based on the amount of daylight in the space.

High end trim/Tuning: Set target light level based on occupant requirements in the space.

Scheduling: Lights automatically turn off or are dimmed at certain times of the day or based on sunrise or sunset.
Controllable Window Shades: Allows users to control daylight for reduced solar heat gain and glare.

Personal Light Control: Allow users in the space to select the correct light levels for the desired task.

Demand Response: Reducing lighting load at times of peak electricity pricing. Reduce HVAC load at Peak Times.

Plug-load Control: Automatically turning task lighting and other plug loads off when they are not needed.
Why Lighting Controls?

Quantifiable
- Tuning / Dimming
- Occupant Sensing
- Day-lighting
- Personal Control
- HVAC Savings
- Window Shading
- Demand Response
- Plug Load Control

Other Benefits
- Productivity
- Maintenance
- Sustainability/LEED
- Property Value
- Flexibility
Total Light Management - Case Study

New York Times

• Measured LPD, Lighting Power Density
 – Designed at 1.28 W/ft²
 – Operating at 0.36 W/ft²

• Seasonal data reflects yearly lighting energy savings of 72%

• Annual Energy Savings:
 5,220 MWh
 10.7 kWh/ft²

“We designed our building to use 1.28 watts per square foot of lighting power,” Hughes said. “With Quantum, The New York Times Company is using only 0.36”

“Glenn Hughes, Director of Construction for the New York Times Building”
Data from the U.S. Environmental Protection Agency

What data exists to support 15%-70% savings?

<table>
<thead>
<tr>
<th>Occupancy Area</th>
<th>Energy Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Office</td>
<td>13-50%</td>
</tr>
<tr>
<td>Classroom</td>
<td>40-46%</td>
</tr>
<tr>
<td>Conference Room</td>
<td>22-65%</td>
</tr>
<tr>
<td>Restrooms</td>
<td>30-90%</td>
</tr>
<tr>
<td>Corridors</td>
<td>30-80%</td>
</tr>
<tr>
<td>Storage Areas</td>
<td>45-80%</td>
</tr>
</tbody>
</table>
Daylight Harvesting

What data exists to support 20%-40% savings?

• 51% lighting energy savings
 Sidelighting Photocontrols Field Study. Heschong Mahone, 2003

• 24% savings in open and private offices

• 40% lighting energy savings
High-end Tuning/Dimming Savings

- High End Trim (programmed at install) 20%- 40%
- Light Level Tuning (managed by area) 10%- 20%

Plug Loads
Total of All Product Stand-by Loads
- 100% during After hours
- % of Occupancy during Normal Hours
Personal Dimming Control: 10%

What data exists to support 10% savings?

- Light Right Consortium and National Research Council of Canada – 15% energy savings with a sample size of over 500 people

Table 2-4. Lighting Control Energy Savings Examples by Application and Control Type

<table>
<thead>
<tr>
<th>Space Type</th>
<th>Controls Type</th>
<th>Lighting Energy Savings (Demonstrated in Research or Estimated as Potential)</th>
<th>Study Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Multilevel switching</td>
<td>22%</td>
<td>Lighting Controls Effectiveness Assessment, ADM Associates for Heschong Mahone Group, May 2002.</td>
</tr>
<tr>
<td></td>
<td>Daylight harvesting (sidelighting)</td>
<td>50% (manual blinds) to 70% (optimally used manual blinds or automatic shading system)</td>
<td>“Effect of interior design on the daylight availability in open plan offices”, by Reinhart, CF, National Research Council of Canada, Internal Report NRCC-45374, 2002.</td>
</tr>
<tr>
<td></td>
<td>Multilevel switching</td>
<td>16%</td>
<td>Lighting Controls Effectiveness Assessment, ADM Associates for Heschong Mahone Group, May 2002.</td>
</tr>
<tr>
<td></td>
<td>Multilevel switching</td>
<td>8%</td>
<td>Lighting Controls Effectiveness Assessment, ADM Associates for Heschong Mahone Group, May 2002.</td>
</tr>
<tr>
<td></td>
<td>Daylight harvesting (sidelighting)</td>
<td>50%</td>
<td>Sidelighting Photocontrols Field Study, Heschong Mahone Group, 2003.</td>
</tr>
</tbody>
</table>
6.3.2.5 Lighting Controls

Control systems must be compatible with lamps, light sources, ballasts and lamps.

Lighting controls must use individual luminaire control, such as DALI equivalent. Ambient lighting must be adjusted per daylight availability, occupant/vacancy, and other BAS signals, such as demand response. Task and personalized ambient lighting must be adjusted per occupancy/vacancy and personal dimming.
*Lighting power base on typical lighting load profile according to ASHRAE lighting schedules. Cooling power based on a minimum coefficient of performance of 3, which is not reached until mid-day.
Add Occupancy Sensing/Timeclock

Lighting Energy Savings ≈ 30%

*Lighting power profile derived from 10 typical Lutron projects ranging in location from New York City, Portland, Boston, and Philadelphia. Cooling power based on a minimum coefficient of performance reached until mid-day.
Peak Savings versus Energy Savings

Add Dimming Lighting Controls*

Lighting Energy Savings ≈ 60%

*Lighting power profile derived from 10 typical Lutron projects ranging in location from New York City, Portland, Boston, and Philadelphia. Cooling power based on a minimum coefficient of performance of 3, which is not reached until mid-day.
Potential Energy Savings

Annual energy consumption = 8.76 kWh / sf

Lighting Power Used: 1W/sf
Potential Energy Savings

Annual energy consumption = $8.76 \text{ kWh} / \text{sf}$
\[\approx 5 \text{ kWh} / \text{sf} \text{ (scheduling)} \]
Annual energy consumption = 8.76 kWh / sf
≈ 5 kWh / sf (scheduling)
≈ 4 kWh / sf (occ.sens.)
Time

Lighting Power Used

Annual energy consumption = 8.76 kWh / sf
≈ 5 kWh / sf (scheduling)
≈ 4 kWh / sf (occ.sens.)
≈ 3 kWh / sq (+tuning)

Potential Energy Savings
Potential Energy Savings

Annual energy consumption = \(8.76 \text{ kWh} / \text{ sf}\)
- \(\approx 5 \text{ kWh} / \text{ sf}\) (scheduling)
- \(\approx 4 \text{ kWh} / \text{ sf}\) (occ. sens.)
- \(3 \text{ kWh} / \text{ sq ft} (+\text{tuning})\)
- \(< 2 \text{ kWh} / \text{ sf}\) (+daylight)
Potential Energy Savings

Annual energy consumption $= 8.76 \text{ kWh/sf}$

- $\approx \approx 5 \text{ kWh/sf}$ (scheduling)
- $\approx \approx 4 \text{ kWh/sf}$ (occ.sens.)
- $\approx \approx 3 \text{ kWh/sq}$ (+tuning)
- $\approx \approx 2 \text{ kWh/sf}$ (+daylight)

$< 1.5 \text{ kWh/sf}$ (+personal)
Potential Energy Savings

Lighting Power Used

- Annual energy consumption = 8.76 kWh / sf
- ≈ 5 kWh / sf (scheduling)
- ≈ 4 kWh / sf (occ.sens.)
- ≈ 3 kWh / sq (+tuning)
- < 2 kWh / sf (+daylight)

Potential Energy Savings
- < 1.5 kWh / sf (+personal)
- < 1.1 kWh / sf (+demand)
Application – Private Office

For an executive office application, personal control of light levels is of utmost importance. Independent research indicates that occupants are up to 15% more productive when they can tailor the lighting to their needs.*

Solution components
- Maestro Wireless Switch
- Radio Power Savr wireless occupancy sensor, ceiling-mount
- Pico wireless control, 2-button

Return on Investment:

2.9 years*

ROI based upon $0.13/kWh; ROI = 2.1 years for $0.18/kWh; ROI = 4.7 years for $0.06/kWh
See BOM, page 12

Energy savings up to:

50%
A best-practice classroom combines energy efficiency with a high quality learning environment. Classroom lighting plays a particularly critical role because of the direct relationship between good lighting and student performance.*

Solution components:
- PowPak® Dimming Module with EcoSystem
- Radio Power Savr wireless occupancy sensor, corner-mount
- Radio Power Savr wireless daylight sensor
- Pico® wireless controls, 5-button
- EcoSystem® H-Series Ballasts

Return on Investment:

2.2 years*

* ROI based upon $0.12/kWh; ROI = 1.6 years for $0.16/kWh; ROI = 2.6 years for $0.08/kWh See BOM page 12

Energy savings up to: 77%

Pico wireless controls allow manual control of lights, place on tabletop or mount to wall

Radio Power Savr corner-mount occupancy/vacancy sensor communicates with load controllers to dim lights based on amount of daylight available

Energy savings: 77%

Lutron® ClearConnect® Wireless Signal Sent
Lutron® ClearConnect® Wireless Signal Received
Application – Conference Room

Small area solutions

- Radio Powr Savr® wireless daylight sensor communicates with module to increase energy savings by automatically turning off or reducing electric light when daylight is sufficient.
- EcoSystem® H-Series digital ballasts provides cost-effective, digitally addressable 1% dimming ballasts that work with wired and wireless sensors and controls – ideal for any application, both retrofit and new construction.
- Pico® wireless controls provides tabletop, handheld, or wall-mount controls that adjust lights or shades from anywhere in the room.
- Radio Powr Savr® wireless occupancy sensor provides energy savings by ensuring light levels are reduced when rooms are unoccupied.
- Sivoia® QS Wireless shades adjust quickly to eliminate glare and reduce heating and cooling costs.
- GRAFIK Eye® QS Wireless with EcoSystem provides customizable preset light control with built-in timelock that allows users to adjust the lights and shades for any task and save energy at the touch of a button.

Other applications
- Open office, Classrooms

New
- CREE Eco chip, EcoSystem enabled 3rd party fixture. Log CREE Series.

Energy-saving strategies
- High-end trim
- Occupancy/Vacancy sensing
- Daylight harvesting
- Personal dimming control
- Controllable window shades
- Timelock scheduling

Potential lighting energy savings
- 60%
Adaptive Corridors – University Study

“A wireless lighting control system reduced lighting energy use 68%...”
LED Stairwell

How does it work?

Unoccupied: 10% light level

Occupied: 50% light level

Stairwell Fluorescent and LED fixture

Radio Powr Savr™ wireless corner-mount occupancy sensor

Occupied: High
Vacant: Low
Application: HVAC Integration

- Occ sensor indicates room occupancy to VAV terminal unit to connect/disconnect room from HVAC system
- CCO on the PowPak relay can also be used in this way
Application Outlet Control

Application

Occupied

Radio Powr Savr
occupancy/vacancy
sensor (ceiling-mount)

PowPak relay module
with Softswitch

Unoccupied

20 A

Lutron Clear Connect
Wireless Signal Sent

Lutron Clear Connect
Wireless Signal Received
Individual Wireless Fixture Controller

Below the Ceiling

Above the Ceiling
Wireless Fixtures

Occupancy sensing

Turns individual fixtures on when people occupy the area.

Daylight harvesting

Dims/brightens the fixture to take advantage of daylight.
Wireless Fixtures

Personal wireless control

Adjusts light level based on wireless remote button presses.
Central and Area Networking

Central timeclock
BACnet integration
Energy reporting
Automatic demand response
Connect your wireless Controls

Wireless Router
Connect your wireless Controls

Time Clock: Sweep on – 7 a.m.

Wireless Router
Connect your wireless Controls

Automatic demand response:
Lights dim
Connect your Wireless Controls

Monitor energy savings
Connect your Wireless Controls

Time Clock: Sweep off – 8 p.m.
Central Control BMS Integration

- Building/energy management systems (BMS/EMS)
- Energy dashboards & analytics packages
- Maintenance & work order management systems
- HVAC
- Fire & safety
- Access & security
- Audio & video
- Metering
- IT
Mobile Access

Access from any PC or mobile device

- Optimized for mobile platforms
- Receive notifications and address building performance needs from anywhere
- Real-time trouble-shooting while in space
Automated Scheduling and Alerts

Provides actionable information to ensure building performance

Plan
Visual calendar for easy scheduling

Alert
Instant notification of a lamp or driver outage
Predict Success with Management Reports

Manage
Operate your spaces remotely using the graphical floorplan

Report
Quickly view and export data that drives decision-making
Questions?

Thank you,

Michael Matour
mmatour@lutron.com
610 597 8942
LED Controls and Drivers

- LED Advantages / Limitations
- LED Technologies
- LED Control Types – Drivers
- Dimming Technologies
What is an LED?

- LED – Light Emitting Diode – Solid State Lighting
- First practical use in the 1960’s
 - Indicators, panel displays, 7 segment displays
- Widely used for general lighting today

Source: http://en.wikipedia.org/wiki/LED
LED Advantages

• Longevity
 – Useful life (L70) of 25,000 to >50,000 hours
 • Reduced maintenance costs
 • <1,000 for incandescent or 3-6,000 for Halogen
 • Requires a driver of equally long life!
• Environmentally friendly
 – No hazardous materials
 • Mercury vapor in CFL lamps
 • Lead-free
• Immediate light output
 – No delay or warm up
• Excellent cold-weather performance
LED Advantages

- Color temperature
 - Available 2,700K to 4,500K

- Color rendition
 - Greater than 90 CRI available
 - Some spec sheets now state R9 values
 (>0 = good)

- Color stability over time and temperature
 - Depends on quality of LED module and phosphor application
LED Limitations

• Higher first cost
 – LEDs for general illumination are (still) expensive
 – LEDs require a driver to convert AC to discrete DC (similar to need for ballasts for fluorescent or transformers for low voltage)

• Thermal Management
 – Heat must be conducted away from LEDs effectively by the fixture or lamp design

• Confusing/inconsistent literature and specs
 – Information about dimming varies widely and is sometimes missing completely!
LED Limitations

- Controls compatibility
 - Dimmable fixtures may have unknown or poor performance
 - Not all LEDs are dimmable

- Application-specific challenges
 - No one style is universally accepted
 - High amount of product variation
 - Inexperienced manufacturers / exaggerated claims

- Color consistency
What type of LED product am I using?

LED Bulbs/T8 LED

- Designed to replace standard incandescent, screw-in CFL bulbs, or linear T8s
- Integral drivers determine dimming performance (if dimmable)

LED Fixtures

- Variable in purpose (cove lights, down lights, 2x2, etc.)
- Usually have an external driver, selected by the OEM mounted as part of the fixture housing
- OEMs offer multiple driver options to support different control technologies and applications (dim vs. non-dim, 0-10V vs. DALI)
What control type do I need?

Line Voltage Dimming - Forward Phase analog

- Most common dimming method (150 million dimmers in use)
 - Designed for resistive (incandescent, halogen) or magnetic low-voltage (MLV) loads
 - Installed base not intended for LEDs, performance issues and compatibility problems likely

![Diagram of Line Voltage Dimming](image)
What control type do I need?

Line Voltage Dimming - Reverse Phase Analog
- Typically used for ELV loads, sometimes perform better with LEDs
- Less likelihood of acoustic noise due to no repetitive peak current
- Smaller installed base, usually require a neutral wire
What control type do I need?

- **Line Voltage Dimming** - 3-Wire analog
 - Fluorescent standard, control signal carried separate from power
 - Precise, less prone to noise, but requires a third line voltage wire
 - Universal voltage, high power factor, multiple control types available
What control type do I need?

DMX-512 digital

- Popular in theater applications & RGB (Red Green Blue) LED control
- Multiple channels for individual color control
- Possible to use for single color general applications
- Complicated wiring for general illumination
- Often requires an interface and more complex programming and installation
What control type do I need?

Low Voltage Control - 0-10V Analog Dimming

- Analog control standard, low voltage wiring to each fixture in lighting control zone
- Requires 0-10V low voltage control output AND line voltage switching
Low Voltage Digital Control - DALI / EcoSystem

- DALI (Digital Addressable Lighting Interface) allows digital addressing of individual ballasts/drivers in fixtures & status feedback
- EcoSystem (Digital Low Voltage Data System) allows assignment to daylight sensors, occupancy/vacancy sensors, timeclocks and multiple controls for one or many fixtures without added wiring
- Control wires are independent of power, no need to rewire line voltage