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» Grand challenges confronting metal based additive manufacturing
» An overview of FSAM & where it fits best

» Seed results: Fabrication of high performance light-weight (Mg & Al based)
alloys by FSAM

» Potential Application I: Integrated stringer assemblies on a skin panel
fabricated by FSAM for aircraft fuselage

» Potential Application II: FSAM for fossil & nuclear energy applications

» Potential Application Ill: Functional & gradient materials by FSAM and
listing of other potential applications for aerospace & energy industries

» Laser-FSAM hybrid & mini-sample testing capabilites

Center far Friction Stir Processing
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\Chronological evolution of metal based additive UNT

UNIVERSITY OF
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Ref: S. Palanivel, N. Phalgun, B. Glass, R.S. Mishra, Mater. Design, 65 (2015), 934-952 3
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Friction Stir- Laser Hybrid Machine at CFSP

Nugget Ref: S. Palanivel, N. Phalgun, B. Glass, R.S. Mishra,

:;’:‘“Ci“g Mater. Design, 65 (2015), 934-952
O Non-consumable rotating tool with a custom designed pin and shoulder is inserted into
the surfaces of sheets or plates to be joined and traversed along the joint line
O Joints are produced in solid state and involve no melting.

O Final thickness of the joint depends on the: (i) thickness of the sheets/plate, and (ii)
number of assembly stages/layers

U In contrast to the cast approach in fusion based techniques, FSAM leads to wrought
microstructures

Center far Friction Stir Processing
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alloy built by FSAM
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Ref: S. Palanivel, N. Phalgun, B. Glass, R.S. Mishra, Mater. Design, 65 (2015), 934-952

» Hardness- 135 HV (Built+aged). These values are similar to Al 2XXX alloys!

Seed results: High performance Mg-Y-Nd
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» Maximum hardness achieved by conventional techniques/heat treatment routes is 110-120 HV
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Seed results: High performance Mg-Y-Nd UNT
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alloy built by FSAM NORTHTEXAS
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Tested parallel 400t //’—\ﬂ -
=

to LD / .

‘ 300 - Tensile testing at room temperature 7

. Initial strain rate: 10° s” ]

BD 200 FSW 1400rpm, 102mm/min + aged 180°C/60h)) | -
Highest Engineering stress

mp hardness ] ——— True stress

100 As rolled + aged 180°C/60h .

—— Engineering stress

LD [ —— True stress

TD

Stress

.u T T T RS T R T SR T T S T
0.00 0.04 0.08 0.12 0.16 0.20
Strain

Higher strength and ductility

Fine (2-7 nm) and uniform distribution of strengthening
precipitates lead to high strength in FSAM + aged specimen

Properties achieved are much higher than the starting
material (T5)



s Seed results: High performance AA 5083 alloy  UNT
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S. Palanivel, H. Sidhar, R. S. Mishra, JOM 67 (3) (2015), 616-621.
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@ Potential application I: strong stiffener/stringer UNT
configurations for aerospace by FSAM NORTHITEXAS

(b) Stringer assembly fabricated using FSAM

./, Flattened skin
panel of the
fuselage

—stiffener by FSAM

» FSAM can also be extended
for designing and
manufacturing longerons in
skin panels

Rear spar

Front spar

Vertical stringer

S. Palanivel, H. Sidhar, R. S. Mishra, JOM 67 (3) (2015), 616-621. 3
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Drive behind FSAM for energy — physical
—  metallurgy of ferritic-martensitic steels used

In fossil & nuclear applicatio
Precipitate phases and their distribution in ferritic-

martensitic steels

[Precipitate | Crystal Structure
Phase and Lattice Typical Composition | Distribution of Precipitates
Parameter

M, C, fee (Cr\sFe,Mo)C; Coarse particles at prior

a=1.066 nm (Cr,Fe,;Mo,5i,WV)C, | austenite grain and
martensite lath boundaries
and fine intra-lath particles

MX fec. NbC, NbN, VN, Undissolved particles and
a=10.444-0.447nm | (CrV)N, Nb({CN) and | fine precipitates at

(NbV)C martensite lath boundaries

M,X Hexagonal Cr;M, Mo,C and W,C | Martensite lath boundaries
a=0.478 nm (Cr;N and Me,C); prior
¢ =0.444 nm austenite grain boundaries

(Mo,C); intra-lath (Mo,C

and W,C); &-ferrite in
duplex steels [Cr, (CN) and
CrMo),(CN)]

Z-phase Tetragonal (CrVNb)N Large plate-like particles in
a=10.286 nm the matrix after creep
c=0.739 nm straining at 600°C

si-carbide | Diamond cubic M,C Prior austenite grain and
a=1.07-122nm | (Fe,Cr,Mo,Si,,)C martensite lath boundaries

and intra-lath

Vanadium | fec.c. V.G, Low number density in

carbide a= 0.420 nm matrix

Laves Hexagonal Fe;Mo Prior austenite grain and
a=0.4744 nm Fe,W and martensite lath boundaries
c= (7725 nm Fe,(MoW) and intra-lath; &-ferrite in

duplex steels

Chi(r) b.c.c. M,;C or Intra-martensite lath;
a= .892 nm. Fe,sCr,;Mo,,C & - ferrite in duplex steels
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1200

ion Zone (FZ): T>Ty

it - Affacted - Zone (HAZ) [as-weldad):

Region1 Tp>T>Tg ¥+ & — Martensite + &

Region2 Tg>T>Acg  Coarse grained y — Martensite

Region3 T;>T>Ag Fine grained y — Martensite

Region4 Agg>T=Ay  y¥— Marensite + Overtempared Martensite
Region5 Agy>T=Tr Overtempered Martensite

we T = temperature achieved during welding
Tm = melting point of steel

T.ﬁ = temperature at which y— & transformation ls complete
on heating

Tr = original tempering temparature of steal

Temperature (°C)
'_\
o
o

800

Ay = temperature at which o — y transformation starts
on heating

= temperature at which o — ytransformation is
complete on heating

:> FSAM range

- Carbide

No & phase,
Finer prior austenite
grain size

600

{

Better mechanical
properties?? 9
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W Potential application II: Architecting creep  UNT
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resistant structures by FSAM for fossil & NORHIES
nuclear sectors

Str_essc_as acting on circular pg2 pressure vessel
cylindrical shell with

closed ends under internal
pressure

a3}

45° (
} o Plane of maximum
shearing stress

‘-\'_D

rs built BY FSAN

/ A 956 stiffen®

Schematic cross-sectional view of

: Schematic of MA956 stiffener rings on
stiffened MA956 assembly over P92

P92 steel for enhanced creep resistance

» Addition of partial or full ring stiffeners for pressure
vessels to increase their lifetime

» Selection & design of the stiffening material needs
to be in such a way that creep and internal stresses
are accommodated by the built stiffener

11
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o materials by FSAM for other applications
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Conceptual schematic showing few possible configurations

Structure for applications
requiring materials with different
properties on either ends

Hard shell, soft core
radient applications

|
Gradient

Sandwiched structure
with a gradient

Alternating gradient
structure

Fully gradient
structure

» FSAM of composite materials FSAM is a potential route to customize build
performance by controlling microstructure

Center far Friction Stil i

ion Stir Processing
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Yo Laser assisted FSAM for reduction of forces ~ UNT
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) and greater processing window NORTHITEXAS

Pre-ESAM thermal treatment Expansion of processing window by
decoupling heat (greater control on

microstructure)

Conventional
FSAM

Tool rotational speed (w)

Preheating by laser source leads to | d
softening of the material ahead of the pin Tool traverse Spee (V)
and reduction of tool forces

SP .

Center far Friction Stir Processing



4o  Mini testing capabilities to support FASM UNT
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« Can FSAM be an effective technique for production of high
performance components?

o It certainly appears promising for simpler geometries

 Looking for collaborative opportunities to explore more
material/design combinations

Thank you

Contact info:
James Withers — jcwithers@mercorp.com
Rajiv Mishra — Rajiv.Mishra@unt.edu
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