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Presentation outline 

 Grand challenges confronting metal based additive manufacturing 
 
 An overview of FSAM & where it fits best 

 
 Seed results: Fabrication of high performance light-weight (Mg & Al based) 

alloys by FSAM  
 

 Potential Application I: Integrated stringer assemblies on a skin panel 
fabricated by FSAM for aircraft fuselage  
 

 Potential Application II: FSAM for fossil & nuclear energy applications 
 

 Potential Application III: Functional & gradient materials by FSAM and 
listing of other potential applications for aerospace & energy industries 
 

 Laser-FSAM hybrid & mini-sample testing capabilites 
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Chronological evolution of metal based additive 
technologies and key challenges 

Ref: S. Palanivel, N. Phalgun, B. Glass, R.S. Mishra, Mater. Design, 65 (2015), 934-952 



Friction stir additive manufacturing (FSAM): 
 Process description 

 Non-consumable rotating tool with a custom designed pin and shoulder is inserted into 
the surfaces of sheets or plates to be joined and traversed along the joint line  

 Joints are produced in solid state and involve no melting.  
 Final thickness of the joint  depends on the: (i) thickness of the sheets/plate, and (ii) 

number of assembly stages/layers 
 In contrast to the cast approach in fusion based techniques, FSAM leads to wrought 

microstructures 
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Ref: S. Palanivel, N. Phalgun, B. Glass, R.S. Mishra, 
Mater. Design, 65 (2015), 934-952 

Friction Stir- Laser Hybrid Machine at CFSP 
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 Hardness- 135 HV (Built+aged). These values are similar to Al 2XXX alloys! 
 Maximum hardness achieved by conventional techniques/heat treatment routes is 110-120 HV 

Seed results: High performance Mg-Y-Nd 
alloy built by FSAM  

Ref: S. Palanivel, N. Phalgun, B. Glass, R.S. Mishra, Mater. Design, 65 (2015), 934-952 
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 Higher strength and ductility 

 Fine  (2-7 nm) and uniform distribution of  strengthening 
precipitates lead to high strength in FSAM + aged specimen 

 Properties achieved are much higher than the starting 
material (T5) 

Seed results: High performance Mg-Y-Nd 
alloy built by FSAM  

50 nm 

TD LD 

BD 

Tested parallel 
to LD 



7 

Fully consolidated build fabricated 
at rotation and tool speed of 500 
rpm and 152mm/min 

Seed results: High performance AA 5083 alloy 
built by FSAM  

Condition Yield Strength 
(MPa) 

Tensile 
strength (MPa) 

% E 

Base Material 190 336 22.5 

FSAM build 267 362 10 

In comparison to base 
material, hardness in 
build is higher by 18% 

Tested parallel to 
build direction  

S. Palanivel, H. Sidhar, R. S. Mishra, JOM 67 (3) (2015), 616-621. 
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Potential application I: strong stiffener/stringer 
configurations for aerospace by FSAM 

 FSAM can also be extended 
for designing and 
manufacturing longerons in 
skin panels 

S. Palanivel, H. Sidhar, R. S. Mishra, JOM 67 (3) (2015), 616-621. 
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Drive behind FSAM for energy — physical 
metallurgy of ferritic-martensitic steels used 

in fossil & nuclear applications 
Precipitate phases and their distribution in ferritic-
martensitic steels 

FSAM range 

No δ phase, 
Finer prior austenite 

grain size 

Better mechanical 
properties?? 
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Larson–Miller diagram showing 
better creep performance of MA956 
in comparison to P92 

Condition As-received FSW 

YS (MPa) 493 ± 17 574 ± 17 

UTS (MPa) 591 ± 4 736 ± 14 

UE (%) 8.1 ± 1.2 11.2 ± 1.1 

E (%) 28.5 ± 1.9 30.7 ± 1.3 

 Grain refinement & higher dislocation 
density after friction stir welding resulted in 
higher RT strength 

Ref: J. Wang, W. Yuan, R.S. Mishra, I. 
Charit, J. Nuclear Mater., 432 (2013), 274-
280 
 

Ref: R.L. Klueh, P.J. Maziasz, I.S. Kim, L. 
Heatherly, D.T. Hoelzer, N. Hashimoto, E.A. 
Kenik, K. Miyahara, J. Nuclear Mater., 307 
(2002), 773-777 

Increase creep strength (?) and 
rupture life by adding MA956 
stringers to P92 steels using 
FSAM 

Drive behind FSAM for energy 
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Potential application II: Architecting creep 
resistant structures by FSAM for fossil & 

nuclear sectors 

 Addition of partial or full ring stiffeners for pressure 
vessels to increase their lifetime 

 Selection  & design of the stiffening material needs 
to be in such a way that creep and internal stresses 
are accommodated by the built stiffener 

Stresses acting on circular 
cylindrical shell with 
closed ends under internal 
pressure 

Schematic cross-sectional view of 
stiffened MA956 assembly over P92  

Schematic of MA956 stiffener rings on 
P92 steel for enhanced creep resistance  
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Potential application III: Functional & gradient 
materials by FSAM for other applications 

 FSAM of composite materials FSAM is a potential route to customize build 
performance by controlling microstructure 

Conceptual schematic showing few possible configurations 

Sandwiched structure  
with a gradient 

Alternating gradient 
structure 

Fully gradient 
structure 



Laser assisted FSAM for reduction of forces 
and greater processing window 

Pre-FSAM thermal treatment 

Preheating by laser source leads to 
softening of the material ahead of the pin 
and reduction of tool forces 
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Tool traverse speed (v) 

Conventional 
FSAM 

Laser assisted 
FSAM 

High v        low strain rate 

High ω         high strain rate 

Expansion of processing window by 
decoupling heat (greater control on 
microstructure) 
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Mini testing capabilities to support FASM 

Mini-fatigue of 7075-T6 

Mini-Fatigue 
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• Can FSAM be an effective technique for production of high 
performance components? 

• It certainly appears promising for simpler geometries 

• Looking for collaborative opportunities to explore more 
material/design combinations 

Friction Stir Additive Manufacturing 

Thank you 

Contact info: 
James Withers – jcwithers@mercorp.com 
Rajiv Mishra – Rajiv.Mishra@unt.edu 
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