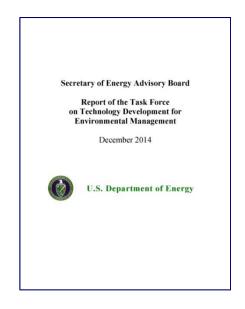


Enabling Innovation in Our Mission

Mark Gilbertson


Deputy Assistant Secretary for Site Restoration

Technology Development Program Our current initiatives

- ❖ New strategy → focus on cost reduction, increasing operational efficiency, and enhancing safety
 - 1) Secretarial Initiative
 - Secretary of Energy Advisory Board (SEAB) Task Force on EM TD
 - 2) Re-structure the EM Technology Development Program
 - 3) Alignment of
 - a) International Program
 - b) Traineeship program
 - c) Cooperative Agreements
 - 4) Partner with Office of Science and Office of Nuclear Energy

SEAB Task Force Recommendations

- **❖ SEAB Task Force issued report in December 2014**
 - Recommendations
 - 1) Incremental technologies improve the efficiency and effectiveness of existing cleanup processes
 - 2) High impact technologies target big challenges, and hold the promise of breakthrough improvements

- 3) Fundamental research provides knowledge and capabilities that bear on the EM challenges
- 4) EM university collaboration next generation
- EM TD technology portfolio and management framework adopts many SEAB recommendations

2) Re-structure the EM TD Program

- **❖** We will target critical, near-term technology challenges
 - A. Disposition of cesium and strontium
 - B. Remediation of mercury contamination
 - C. Smarter solutions for technetium management
 - D. Develop capability for Radioactive Test Beds
 - E. Leverage federally funded initiatives and advancements in robotics

A. EM TD – Cesium/Strontium

Deep Bore Hole Demonstration

- ➤ Target waste are Cs (74 million curies) and Sr (32 million curies) packaged in 1,936 stainless steel capsules in underwater storage at Hanford's Waste Encapsulation and Storage Facility
- Prototypical family of designs for universal canisters
- Universal Can Challenge is led by Steve Gomberg (EM-32)

Use of non-elutable ion exchange resins

- \triangleright Strive to handle contaminants once \rightarrow direct disposal once captured
- "IX Challenge" is led by David Hobbs (SRNL on detail to EM)

Disposition Alternatives for Calcine Waste

- > 4,400 m³ (155,000 ft³) or 5.5 million kg (12.2 million lbs) stored in 43 stainless steel bins at Idaho
- "Calcine Challenge" is led by Joel Case (ID) and Steve Schneider (EM-21)

B. EM TD – Mercury

- ❖ About 11 million kg (24.2 million lbs) of elemental mercury were used at the Oak Ridge Y-12 National Security Complex for lithium isotope separation from 1950-1963
- ❖ About 3% of the mercury was lost to the air, to soil and rock under facilities, and to East Fork Poplar Creek, which originates onsite

Mercury droplets in contaminated Y-12 soil

- Elemental mercury in surface water can convert to methylmercury, which is a neurotoxin and accumulates in fish
- ➤ While discharges ended in 1963, mercury continues to be released into the creek from contaminated soil and water
- "Mercury Challenge" is led by Karen Skubal (EM-12)

C. EM TD – Technetium

- **❖** Tc-99 is an environmental risk driver
 - > Accounts for 90% of risk in the Hanford site performance assessment
 - Tc-99 is a contaminant of interest in at least 18 waste units
- Significant uncertainty
 - **➢** Movement of Tc-99 in the deep vadose zone
 - Predicting future impacts to groundwater
 - Long-term remediation and monitoring
- Treatment issues
 - Volatilizes during plant processing (e.g., in melters)
 - Separation, capture and immobilization must address multiple technetium species
- "Technetium Challenge" is led by Nick Machara (EM-21)

D. EM TD – Rad Test Beds

- Physical platforms to demonstrate innovative tooling, treatment technologies, and other solutions at our existing facilities
- Provide technologists the unique opportunity to
 - Use radioactive and chemically reactive wastes and materials (no costly surrogates or simulants)
 - Conduct technology demonstrations in spaces and areas that
 - Have radiation fields
 - Are contaminated with surface and/or fixed radioactivity
 - Are inaccessible, inhabitable, or not safe for worker entry
 - Are difficult to replicate or mock-up
- * "Rad Test Beds Initiative" is led by Rod Rimando (EM-23)

E. EM TD - Robotics

- * Robotics are needed to access areas/spaces within our facilities that are
 - Inaccessible, hard to reach, or limited by size and configuration
 - Un-inhabitable, contaminated, unsafe
 - Otherwise preclude the safe and direct entry by workers
- **Robotics** are needed to perform remote tasks
 - Monitoring, measuring, sampling, surveying, imaging, and other characterization and investigative tasks
 - Cutting, dismantlement, decon, repair, housekeeping, and surveillance
 - Initial response to off-normal events, performing emergency actions, and conducting search and rescue operations
 - Post-accident actions such as damage and habitability assessments, troubleshooting, forensic investigations, and initial recovery actions
- **Leverage other Federal agencies and capabilities**
- * "Robotics Initiative" is led by Rod Rimando (EM-23)

3) Alignment of TD Enablers

a) International Program

Expanding technology, knowledge and personnel exchanges with the UK, Canada, and Japan

b) Traineeship Program

- > Engage faculty, postdocs, and graduate students for fresh ideas
- > Access advances in engineering and science
- > Provide a cadre of educated personnel over the next few decades

c) Cooperative Agreements

- Scientific and engineering research to solve EM challenges
 - Consortium for Risk Evaluation with Stakeholder Participation
 - Mississippi State University Institute for Clean Energy Technology
 - Florida International University
 - NuVision Engineering (international liaison with the UK)

4) Office of Science Basic Research Needs for Environmental Management – July 2015

Priority Research Directions

- High dimensional interrogation of inaccessible environments with diverse data
- 2) Predicting and controlling chemical and physical processes far from equilibrium
- 3) Understanding critical physicochemical interfacial reactions across scales
- 4) Long term evolution of non-equilibrium structures
- 5) Harnessing physical and chemical mechanisms to revolutionize separations
- 6) Mechanisms of Materials Degradation in Harsh Environments
- 7) Mastering Hierarchical Structures to Tailor Waste Forms
- 8) Scale-aware prediction of terrestrial system behavior and response to perturbations

- ***** Future investments to revive EM innovation
- Our continued mission success relies on creativity and enthusiasm
- We will exploit and leverage opportunities with other technologists
 - ➤ Especially with other federal agencies where taxpayer funds have already been invested
- We will cultivate a mind-set and discipline that enables innovation