Post Irradiation Examination of Stainless Steel Cladding from In-Reactor Permeation Experiment

Presented by
Walter G. Luscher
D.J. Senor, C.D. Carlson, M.E. Cunningham,
K.K. Clayton, G.R. Longhurst

Presented at
Tritium Focus Group Meeting
Aiken, South Carolina
22-24 April 2014
Presentation Outline

- **Motivation**
 - Understand in-reactor tritium permeation performance
 - Support predictive modeling and design efforts
 - Mitigate environmental release

- **TMIST-2: In-Reactor Permeation Test**
 - Experimental description
 - In-situ permeation measurements

- **Pre- and Post Irradiation Examination**
 - Metallography
 - Auger Electron Spectroscopy (AES)
 - Helium-3 Analyses

- **Summary and Conclusions**
Motivation

- Understand in-reactor tritium permeation in stainless steel
 - Fission Reactor
 - Secondary Source Rods
 - Fusion Reactor
 - Containment Materials
 - TPBARs
 - Cladding

- Mitigate tritium release to environment
 - Compliance with Regulatory Authority
 - Environmental Stewardship
TMIST-2: In-Reactor Permeation Test

- Evaluate permeation performance for 316 Stainless Steel
 - Temperature dependence (292° and 330° C)
 - Pressure dependence (0.1, 5, 50 Pa)
Experimental Description (1/2)

- Experimental lead-out test assembly
 - Irradiated in Advance Test Reactor (ATR) at Idaho National Laboratory (INL)
Experimental Description (2/2)

- Test Irradiation
 March 2009 - April 2010
- Flux wire analysis
 - 258 EFPD at 18MW_{th}
 - 1.63 dpa
Permeation Discussion

- Ex-reactor permeation measurements
 - > 100 Pa → Diffusion-limited → $P^{0.5}$
 - < 100 Pa → Surface-limited → P^1

- In-reactor permeation mechanism uncertain for test conditions
 - Direct dissociative chemisorption
 - Associated with diffusion-limited permeation
 - Disrupted ex-reactor at low pressure by:
 - Surface impurities
 - Oxide films
 - Radiation-enhanced dissociation
 - Radiolysis of T_2 in gas phase
 - Physical or chemical changes in surface in-reactor
Results of Permeation Measurements

- Observed $P^{0.5}$ pressure dependence in-reactor
 - Suggests diffusion-limited permeation at low pressure
 - PIE performed to evaluate radiation effects on physical or chemical condition of surface
Pre-Test Characterization

- Evaluate pre- and post-irradiation microstructure and surface chemistry
 - Identify radiation effects on physical structure or surface chemistry of the sample

- Microstructure
 - Optical micrograph indicates prototypic microstructure for 316 SS

- AES
 - Preliminary results typical of 316 SS
 - Suggest presence of a thin oxide-layer
Post-Irradiation Examination

Microstructure
- Grain structure not as well defined post-irradiation
- Further inspection needed

AES
- Preliminary results suggest enhanced carbon content and low oxygen content at surface
- Further inspection needed
Performed at end of sample outside active region

Decay product of 3H

- Suggests slower permeation through sputter-coated region
Summary and Conclusions

- In-reactor measurements indicate diffusion limited permeation under test conditions
- Preliminary post irradiation results suggest:
 - Possible change in microstructure
 - Potential differences in surface chemistry
 - Enhanced 3He concentration suggests slower permeation
- In-reactor permeation mechanism is still unclear
 - Additional inspections needed to determine irradiation effect on microstructure and surface chemistry
 - Radiolysis in the gas phase may also contribute to in-reactor permeation
Back-up Slides
Back-up Slides

Permeation Supply Gas System

Temperature Control & Sweep Gas System

He

$+1000\text{ ppm } H_2$
(for startup only)

T_2

He

To Stack

Getter Bed

Cracking Bed

IC

B

B

Ne

M

M

IC

IC

ATR Pressure Vessel

Proudly Operated by Battelle Since 1965
Permeation results at 290° C
- Observed $P^{0.5}$ pressure dependence