Investigation of Advanced Stochastic Unit Commitment Solution for Optimal Management of Uncertainty

C. Lindsay Anderson Gabriela Martinez Jialin Liu

CERTS R&M Review Cornell University August 4-5, 2015

Motivation

With increasing participation of variable and uncertain resources on both sides of the power system, operational decisions require stochastic methods. Challenges:

- Characterizing uncertainty, scenario selection
- Computational tractability, large networks
- Flexibility,
 - for different types of uncertainty (wind, solar, responsive demand)
 - for integration with complementary tools

Objective

For 2015, we proposed to continue development of a reliable, scalable, and flexible implementation of the SCUC solution, including:

- Tractability for large networks
- Flexiblity for various types of uncertainty and tools
 - Renewables, demand response,
 - Integration with MatpowerTM, MOPSTM
- Adjustable levels of risk-aversion

Presentation Overview

To this end, we will summarize progress on:

- 1 Chance-constrained UC formulation, and scalability
- 2 Test implementation with AC-OPF
- 3 Comparative testing with robust and hybrid formulations

Chance-Constrained Unit Commitment

The chance constrained model differs from the stochastic UC model in that we require power balance, spinning, and non-spinning reserve constraints to be probabilistic.

- User-defined reliability levels are used to compute probabilistic trajectories of the uncertain generation
- Power balance of the system is determined with an appropriate netload (representing a user-defined probability level to operate the system)
- System reserves are then allocated with probabilistic guarantees

Stochastic Unit Commitment Formulation

Given a set of realization: $\omega \in \Omega$

Stochastic two-stage model

$$\begin{aligned} & \min \quad C_1(u_g, v_g) + \mathbb{E}[C_2(p_g)] \\ & \quad (p_g(\omega), u_g, v_g) \in \mathcal{C}_{\mathrm{dyn}}^{\mathrm{gen}} \cap \mathcal{C}_{\mathrm{stat}}^{\mathrm{gen}}, \\ & \quad \sum_{n \in \mathcal{N}_k} p_{g_n}^t(\omega) + \mathbf{p}_{r_k}^t(\omega) + p_{\mathrm{ij}_k}^t(\omega) = \mathbf{L}_k^t, k \in \mathcal{K}, \\ & \quad |p_{\mathrm{ij}_l}(\omega)| \leq F_l, l \in \mathcal{B}, \\ & \quad \sum_{n \in \mathcal{N}} sp_n^t(\omega) = Sr^t, \\ & \quad \sum_{n \in \mathcal{N}} sp_n^t(\omega) + np_n^t(\omega) = Sn^t \end{aligned}$$

 u_g, v_g is the (risk-neutral) commitment that minimizes the expected dispatch cost $\mathbb{E}[C_2(p_q)]$

Chance-Constrained Formulation

Scenarios $\omega \in \Omega$

Risk-averse UC and probabilistic reserve levels:

$$\begin{aligned} & \min \quad C(u_g, v_g, p_g) \\ & \quad (p_g, sp, np, u_g, v_g) \in \mathcal{C}_{\text{dyn}}^{\text{gen}} \cap \mathcal{C}_{\text{stat}}^{\text{gen}}, \\ & \quad \mathbb{P} \big[\sum_{n \in \mathcal{N}_k} p_{g_n}^t + p_{ij_k}^t = \mathbf{L}_k^t - \mathbf{p}_{r_k}^t, k \in \mathcal{K} \big] \geq \pi, \\ & \quad |p_{ij_l}| \leq F_l, l \in \mathcal{B}, \\ & \quad \mathbb{P} \big[\sum_{n \in \mathcal{N}} sp_n^t = Sr^t + \alpha \mathbf{p}_r^t \big] \geq \rho, \\ & \quad \mathbb{P} \big[\sum_{n \in \mathcal{N}} sp_n^t + np_n^t = Sn^t + \beta \mathbf{p}_r^t \big] \geq \rho \end{aligned}$$

 (u_g,v_g,p_g) schedule determined by a risk-averse net-load operating level: $[L-p_r]_{\pi}$ (sp,np) system reserves allocated with a risk-averse renewable level: $[p_r]_{\rho}$

Chance-Constrained Unit Commitment

Relaxation Approach - Stochastic Subproblems

Chance-Constrained Unit Commitment

Spatial Distribution of Risk

CERTS
HOOTTUM FOR ELECTRIC PRELIMBELTY TECHNOLOGY SOL

Temporal Distribution of Risk

Probabilistic System Reserve Levels

Chance-Constrained Unit Commitment

Chance-Constrained Unit Commitment

Results Overview

A sampling of results for various networks:

- Out of sample performance for various risk levels
- IEEE 30-bus, 57-bus, and 118-bus
- Polish system 3120 buses, with AC OPF (initial tests)

Data-driven Relaxation \mathcal{H}_{ρ}

Out-of-sample performance for different reliability levels Out-sample size 10^7

0.800

 10^{6}

0.888

0.910

0.967

0.992

 PG_{ρ} : risk-levels $\rho \geq \pi$

0.703

Feasible

M π	0.8	0.85	0.9	0.95	0.99	0.999
10^{3}	0.708	0.812	0.814	0.897	0.906	0.994
10^{5}	0.787	0.823	0.874	0.901	0.932	0.998
10^{6}	0.796	0.829	0.894	0.901	0.932	0.998

Out-of-sample performance for different reliability levels $_{\rm Out\text{-}sample\ size\ 10^7}$

p, r								
M	0.8	0.85	0.9	0.95	0.99	0.999		
10^{3}	0.990	0.992	0.992	0.992	0.994	0.997		
10^{5}	0.992	0.992	0.993	0.993	0.994	0.999		
10^{6}	0.992	0.992	0.993	0.993	0.994	0.999		

 PG_r : risk-level 1

M	0.8	0.85	0.9	0.95	0.99	0.999
10^{3}	0.996	0.998	0.998	0.997	0.991	0.999
10^{5}	0.999	0.999	0.999	0.999	0.999	0.999
10^{6}	0.999	0.999	0.999	0.999	0.999	0.999

UC DC Power Flow: Case 57

Netload prob. level 0.95. Total reserve prob. level 0.9

wind farms located at nodes 4, 23, 30, 52, 57.

Risk-averse selection of units case 57

IEEE 57 bus, wind farms at nodes 4 23 30 52 57. Prob. reserve level 0.9

System Reserve Levels IEEE 57 bus. Netload prob 0.9

Different patterns are caused by selection of joint-probability total wind power trajectories. Probabilistic reserve levels are determined by optimization model (non-trivial).

Example of (time) Marginal Probabilistic Reserves

AC Power Flow Testing (Proof of Concept)

- Heuristic is required to ensure feasible solution
- AC dispatch is forward dynamic optimization (myopic)
- No guarantees on global optimality, only know this is a local minimum

UC AC Power Flow: Case 3120sp

Wind power share corresponds to 30 percent

Load pattern NYISO, wind power pattern production ELIA (Belgium)

UC AC power flow: Case 3120sp Wind power share corresponds to 30 percent

Load pattern NYISO, wind power pattern production ELIA (Belgium)

CERTS
CONSORTIUM FOR ELECTRIC RELIMBILITY TECHNOLOGY SOL

Summary

Table: Comparing Approximate Computation Time

Network	Scenarios	Solve Time (min)	Comments
5-bus	10^{6}	< 1	DC, no reserves
57-bus	10^{4}	1	DC, reserves
118-bus	10^{5}	5-10	DC, reserves
3120sp	10^{3}	120	AC, reserves

Summary

- The CCUC model is scalable in reasonable computation time
- Provides customized risk distribution across time and space
- Integrates with AC OPF through MatpowerTM, and (likely) subsequently MOPSTM

Comparison of Probabilistic and Robust Approaches¹

The objective of this analysis was to consider renewables in conjunction with responsive demand, and to compare efficacy of approaches on a simple, and practical case study.

Description of the analysis proceeds as follows:

- Classes of reserves
- Description of three approaches to risk
- Comparative results and summary

The model

This analysis builds on the stochastic OPF model developed in Li & Mathieu (2015) with the addition of the following:

- Addition of significant wind penetration at multiple locations
- Development of model and uncertainty characterization for wind output
- Implementation of ramp limits
- Adaptive risk levels to allow a mixed approach

Reserves Classifications

The model uses three types of reserves, defined as follows:

- reserves from responsive (thermostatically controlled) loads,
- 2 frequency reserves provided by online generators (AGC), and
- **3** generator intra-hour re-dispatch reserve, on 15-minute time scale.

Solution Approaches

We use this augmented model to compare the following solution approaches:

- Robust approach: worst case scenarios are considered
- Percentile approach: use of probabilistic levels of wind scenarios
- Mixed approach: percentile approach is used for the first few hours when the wind forecast error is relatively small. Robust approach is used for remaining periods.

Test System

- IEEE 30 Bus System.
- 4 wind farms at bus 1, 10, 20, 30.
- Maximum Share of Wind (WS) is 30%.
- 10% of the each load could provide demand response.
- 90% is used for the percentile approach.

Result: Total System Reserve

Result: Generator Total Secondary and Re-dispatch Reserve

Result: Unit 5 Secondary and Re-dispatch Reserve

With Ramping

• With ramping, the robust and mixed approach is no longer feasible at high WS.

WS	10%	15%	20%	25%	30%
Robust	F	F	I	I	I

Table: Feasibility of Robust Approach at Different WS

■ Wind Curtailment (WC) might be needed at high WS for the percentile and mixed approach.

WS	10%	15%	20%	25%	30%
Probability	0	0	≤ 0.01	≤ 0.02	≤ 0.04
WC(MW)	0	0	≤ 0.1	≤ 0.24	≤ 0.53

Table: Hourly Probability of Wind Curtailment

Cost Comparison

 \blacksquare Cost of the three approaches for 10% & 15% WS

Summary: Method Comparison

- Robust methods may not allow inclusion of high levels of wind penetration within ramp limits
- A hybrid method can provide highest protection under significant uncertainty, while maintaining feasibility
- Even when feasible, the reserves add to system costs as wind penetration increases

Conclusions

The primary conclusions of recent work are as follows:

- Tests of chance-constrained UC on larger networks show promising computation times for large scenario sets
- Provides a balance of risk and cost between expected value methods and robust methods
- Comparisons indicate that robust solutions may not be practical as uncertainty increases
- Chance-constrained implementation allows complete customization of risk preferences (both time and space)

Future Directions

Ongoing work for this project includes:

- Further work on AC implementation
- Integration with MOPSTM
- Integrate storage through approximate dynamic programming methods (initiated)
- Testing of solution quality impact of scenario selection algorithms (in progress)

Contributions

- Martinez, G., & Anderson, C. L. (2014). Toward a scalable chance-constrained formulation for unit commitment to manage high penetration of variable generation. Allerton Conference on Communication, Control and Computing, 18.
- Martinez, M. G., & Anderson, C. L. (2015) A Risk-averse Optimization Model for Unit Commitment Problems. 48th Hawaii International Conference on System Sciences (HICSS).
- Liu, J., Martinez, M. G., Li, B., Mathieu, J. L., & Anderson, CL. A Comparison of Robust and Probabilistic Reliability for Systems with Renewables and Responsive Demand. Submitted to 2016 49th Hawaii International Conference on System Sciences (HICSS)
- Tupper, Laura L., Matteson, David, S., & Anderson, C. L. Comparing and Clustering Nonstationary Time Series with Applications to Wind Speed Behavior, to be presented at the Joint Statistical Meetings, Seattle, WA. August 8-13, 2015.

Thank you!

