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Motivation

With increasing participation of variable and uncertain
resources on both sides of the power system, operational
decisions require stochastic methods. Challenges:

m Characterizing uncertainty, scenario selection

m Computational tractability, large networks
m Flexibility,

m for different types of uncertainty (wind, solar, responsive
demand)
m for integration with complementary tools
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Objective

For 2015, we proposed to continue development of a reliable,
scalable, and flexible implementation of the SCUC solution,
including:

m Tractability for large networks

m Flexiblity for various types of uncertainty and tools

m Renewables, demand response,
m Integration with Matpower™  MOPS™

m Adjustable levels of risk-aversion
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Presentation Overview

To this end, we will summarize progress on:
Chance-constrained UC formulation, and scalability
Test implementation with AC-OPF

Comparative testing with robust and hybrid formulations
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Chance-Constrained Unit Commitment

The chance constrained model differs from the stochastic UC
model in that we require power balance, spinning, and
non-spinning reserve constraints to be probabilistic.

m User-defined reliability levels are used to compute
probabilistic trajectories of the uncertain generation

m Power balance of the system is determined with an
appropriate netload (representing a user-defined
probability level to operate the system)

m System reserves are then allocated with probabilistic
guarantees
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Stochastic Unit Commitment Formulation

Stochastic two-stage model

Given a set of realization: w €

min  Cy(u,,v,) + E[Ca(p,)]
(pg(w), ug,vg) € ei;?l N Cotat:
3 nen;, P (@) + Pr, (W) + pijj(w) = L, k € K,
i, (w)| < Fi,1 € B,
Zné/\/ Sp%((x)) = Srtv
> onen SPh (W) +npp (w) = Sn'

Ug, Vg is the (risk-neutral) commitment that minimizes the
expected dispatch cost E[C2(p,,)]




Chance-Constrained Formulation

Scenarios w € €2

Risk-averse UC and probabilistic reserve levels:

min  C(u,,v,,p,)
(pg, SP,MP, Ug, Vg) € (356;?1 N C&,
P[> nen Pon + Piik =L, — P,k €K] > 7,
|pijl‘ < F,leB,
P[> ,cn sph = Srt + apl] > p,
P[> ,en sph +npl, = Sn' + Bpl] > p

(ug,vq,pg) schedule determined by a risk-averse net-load
operating level: [L — p,|~

(sp,np) system reserves allocated with a risk-averse renewable
level: [p,],



Chance-Constrained Unit Commitment

Operating risk-levels

Dual decomposition Algorithmic Scheme

Primal-feasible solution
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Relaxation Approach - Stochastic Subproblems

Robust

convex
relaxation

Distributed
Risk




Chance-Constrained Unit Commitment

Operating risk-levels

user-defined spatio-temporal
reliability selection

Dual decomposition

Primal-feasible solution
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Spatial Distribution of Risk
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Temporal Distribution of Risk
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Probabilistic System Reserve Levels

mean-scenario
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Chance-Constrained Unit Commitment

Operating risk-levels Risk-averse:

Netload-level
Reserve-level

Dual decomposition UcC |_ Schedule

Dispatch:
MATPOWER

OPF

Primal-feasible solution Dual decomposition: variable duplication
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Chance-Constrained Unit Commitment

Operating risk-levels

Dual decomposition

Primal-feasible solution

Augmented Lagrangian
Heuristic
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Results Overview

A sampling of results for various networks:
m Out of sample performance for various risk levels
m [EEE 30-bus, 57-bus, and 118-bus
m Polish system 3120 buses, with AC OPF (initial tests)
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Data-driven Relaxation J,

A,




Out-of-sample performance for different reliability levels

Out-sample size 107

PG risk-level 7
T 0.8 0.85 0.9 0.95 0.99 | 0.999

M
103 0.668 | 0.757 | 0.799 | 0.900 | 0.960 | 0.989
10° 0.699 | 0.794 | 0.885 | 0.910 | 0.968 | 0.992
0.703 | 0.800 | 0.888 | 0.910 | 0.967 | 0.992

10°
. PG risk-levels p > 7

™

M 0.8 0.85 0.9 0.95 | 0.99 | 0.999

103 0.708 | 0.812 | 0.814 | 0.897 | 0.906 | 0.994
10° 0.787 | 0.823 | 0.874 | 0.901 | 0.932 | 0.998
10° 0.796 | 0.829 | 0.894 | 0.901 | 0.932 | 0.998




Out-of-sample performance for different reliability levels

Out-sample size 107

PG, risk-levels m and 1

™

M 0.8 0.85 0.9 0.95 | 0.99 | 0.999

103 0.990 | 0.992 | 0.992 | 0.992 | 0.994 | 0.997
10° 0.992 | 0.992 | 0.993 | 0.993 | 0.994 | 0.999

. 108 0.992 | 0.992 | 0.993 | 0.993 | 0.994 | 0.999
PG, risk-level 1

M 108 0.85 0.9 0.95 | 0.99 | 0.999
103 0.996 | 0.998 | 0.998 | 0.997 | 0.991 | 0.999
10° 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999
10° 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999




UC DC Power Flow: Case 57

Netload prob. level 0.95. Total reserve prob. level 0.9
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Risk-averse selection of units case 57
IEEE 57 bus, wind farms at nodes 4 23 30 52 57. Prob. reserve level 0.9

Netload prob. 0.8 Netload prob 0. 9




System Reserve Levels
IEEE 57 bus. Netload prob 0.9

e JOINL TOD. 105 0.9 = imimim Joint prob. res 095 mmmmmmms Joint prob. res 0.99
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Different patterns are caused by selection of joint-probability
total wind power trajectories. Probabilistic reserve levels are

determined by optimization model (non-trivial).




Example of (time) Marginal Probabilistic Reserves
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AC Power Flow Testing (Proof of Concept)

m Heuristic is required to ensure feasible solution

m AC dispatch is forward dynamic optimization (myopic)

m No guarantees on global optimality, only know this is a
local minimum
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UC AC Power Flow: Case 3120sp

Wind power share corresponds to 30 percent

Load pattern NYISO, wind power pattern production ELIA
(Belgium)
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UC AC power flow: Case 3120sp

Wind power share corresponds to 30 percent

Load pattern NYISO, wind power pattern production ELIA
(Belgium)
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Summary

Table: Comparing Approzimate Computation Time

Network Scenarios Solve Time (min) Comments
5-bus 106 <1 DC, no reserves
57-bus 104 1 DC, reserves
118-bus 10° 5-10 DC, reserves
3120sp 103 120 AC, reserves
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Summary

m The CCUC model is scalable in reasonable computation
time
m Provides customized risk distribution across time and space

m Integrates with AC OPF through Matpower™ and
(likely) subsequently MOPS™
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Comparison of Probabilistic and Robust Approaches!

The objective of this analysis was to consider renewables in
conjunction with responsive demand, and to compare efficacy of
approaches on a simple, and practical case study.

Description of the analysis proceeds as follows:
m Classes of reserves
m Description of three approaches to risk

m Comparative results and summary

~CERTS-
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The model

This analysis builds on the stochastic OPF model developed in
Li & Mathieu (2015) with the addition of the following:

m Addition of significant wind penetration at multiple
locations

m Development of model and uncertainty characterization for
wind output

m [mplementation of ramp limits

m Adaptive risk levels to allow a mixed approach
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Reserves Classifications

The model uses three types of reserves, defined as follows:

reserves from responsive (thermostatically controlled)
loads,

frequency reserves provided by online generators (AGC),
and

generator intra-hour re-dispatch reserve, on 15-minute time
scale.
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Solution Approaches

We use this augmented model to compare the following solution
approaches:
m Robust approach: worst case scenarios are considered
m Percentile approach: use of probabilistic levels of wind
scenarios
m Mixed approach: percentile approach is used for the first
few hours when the wind forecast error is relatively small.
Robust approach is used for remaining periods.
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Test System

m [EEE 30 Bus System.

m 4 wind farms at bus 1, 10, 20, 30.

m Maximum Share of Wind (WS) is 30%.

m 10% of the each load could provide demand response.

m 90% is used for the percentile approach.
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Result: Total System Reserve
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Result: Generator Total Secondary and Re-dispatch
Reserve

Generator
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Result: Unit 5 Secondary and Re-dispatch Reserve

THo | ) -

Y B

Figure: Robust Figure: Percentile Figure: Mixed




With Ramping

m With ramping, the robust and mixed approach is no longer
feasible at high WS.

wSs 10% | 15% | 20% | 25% | 30%
Robust F F I I I

Table: Feasibility of Robust Approach at Different WS

m Wind Curtailment (WC) might be needed at high WS for
the percentile and mixed approach.

] 10% | 15% | 20% | 25% | 30%
Probability | 0 0 | <001 |<002]<0.04
WCMW) | 0 0 | <01 |<024 <053

Table: Hourly Probability of Wind Curtailment




Cost Comparison

m Cost of the three approaches for 10% & 15% WS

I Percentile
Mixed
16000 | [ Robust — 5
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Cost
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Summary: Method Comparison

m Robust methods may not allow inclusion of high levels of
wind penetration within ramp limits

m A hybrid method can provide highest protection under
significant uncertainty, while maintaining feasibility

m Even when feasible, the reserves add to system costs as
wind penetration increases
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Conclusions

The primary conclusions of recent work are as follows:

m Tests of chance-constrained UC on larger networks show
promising computation times for large scenario sets

m Provides a balance of risk and cost between expected value
methods and robust methods

m Comparisons indicate that robust solutions may not be
practical as uncertainty increases

m Chance-constrained implementation allows complete
customization of risk preferences (both time and space)
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Future Directions

Ongoing work for this project includes:
m Further work on AC implementation
» Integration with MOPS™

m Integrate storage through approximate dynamic
programming methods (initiated)

m Testing of solution quality impact of scenario selection
algorithms (in progress)
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