

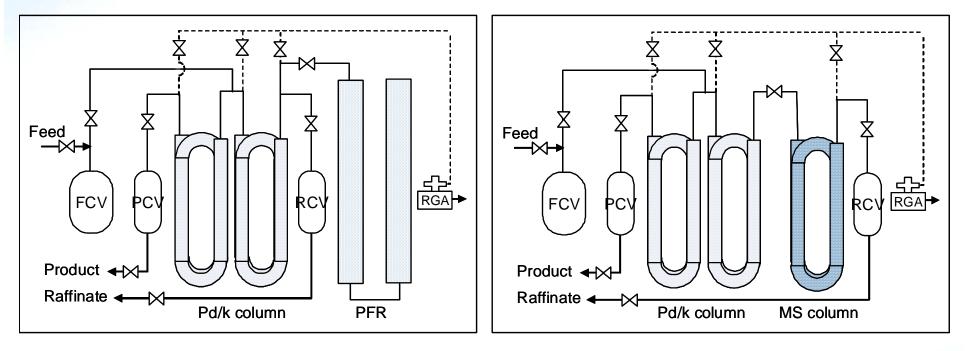
Advances in Hydrogen Isotope Separation Using Thermal Cycling Absorption Process (TCAP)

X. Steve Xiao

Contributions: L.K. Heung, H.T. Sessions, S. Redd

Hydrogen Isotope Separation Timeline

 Discovery of deuterium 	1931		
 Discovery of tritium 	1934		
Isotope separation in SRS			
 –Thermal diffusion 	1957-1986		
 –Fractional absorption 	1964-1968		
 –Batch Cryogenic distillation 	1967-2004		
 –TCAP 	1994-present		

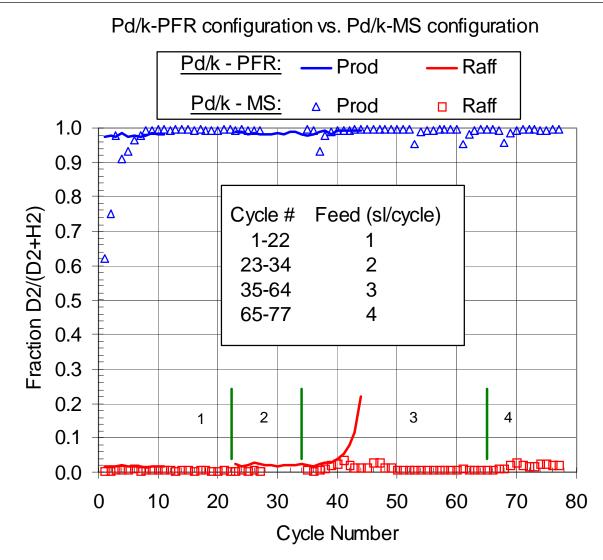


TCAP Advance Continues

TCAP concept invented at SRL	1980
• Experimental TCAP achieved 97% purity (D ₂ , H ₂)	1983
 Prototype TCAP achieved 99% purity (D₂, H₂) 	1989
 Pilot TCAP demonstrated (production-configured) 	1993
 Production TCAP achieved target T₂/D₂ separation 	1994
 Compact TnT design tested at LANL 	2001
Batch Cryogenic distillation column replaced by TCAP	2004
Compfree CTC concept developed	2006
 Compfree CTC experiment reached 4,000 cycles 	2009
 Inverse Column achieved 2X+ capacity & higher purity 	2009
Micro-TCAP (batch) for LLE	2013
Mini-TCAP for Shine Medical Technologies	2014
CTC-TCAP with inverse column for SRS Tritium plant	2014+

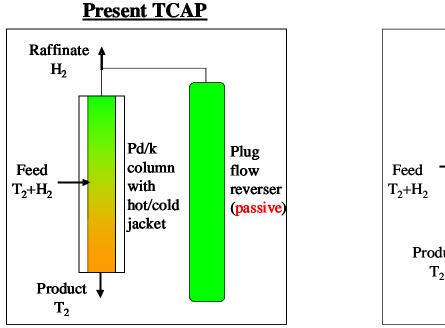
Advance 1: Inverse Column

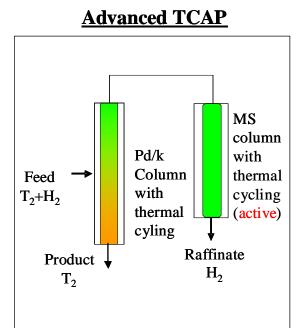
Pd/k – PFR configuration


Pd/k – Inverse Column configuration

Mini-TCAP with Inverse Column Experimental Unit

Throughput Doubled!



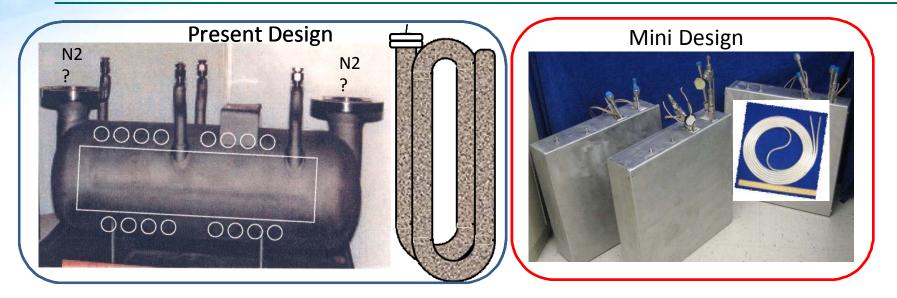


6

T₂ Inventory Reduction – to 1/2

Mini-TCAP Reduces T2 Inventory by ½ & possibly more

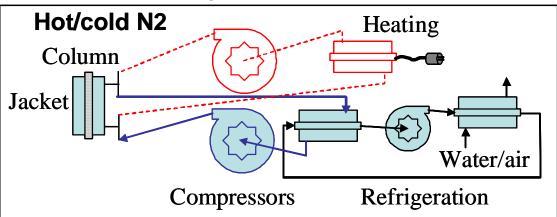
Advance 2: Extremely Compact Column Design


Pd/k column Coolant N2 gas Heater Heater Cooling tube Coolant LN2 liquid

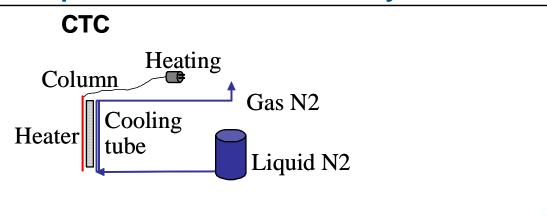
Better heat transfer with counter-flow

Replacement of heater possible

Heat Load Reduction – to 25%



Commonanto	Heat Load			
Components	Present Design	Mini Design		
Total (relative)	100	25		
Packing material	10 %	24 %		
Column	16 %	38 %		
Jacket/Cooling tube	74 %	38 %		

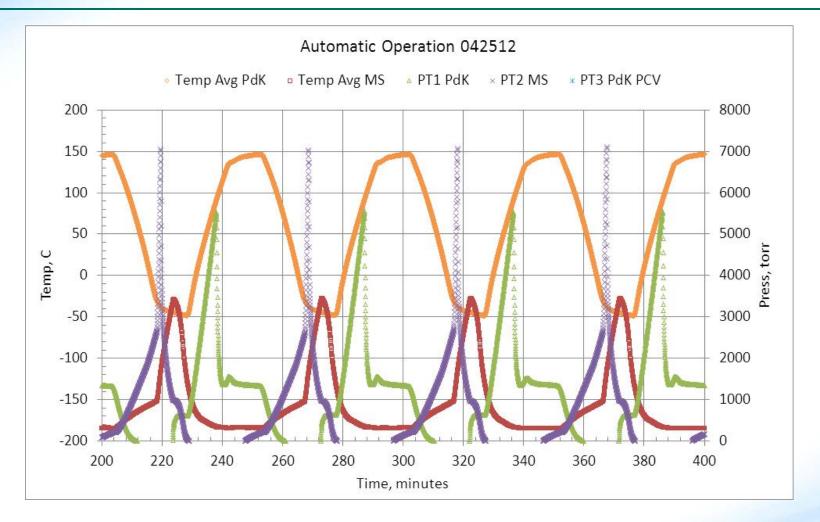


Advance 3: Equipment & Footprint Reduction to 1/10th

Present TCAP System

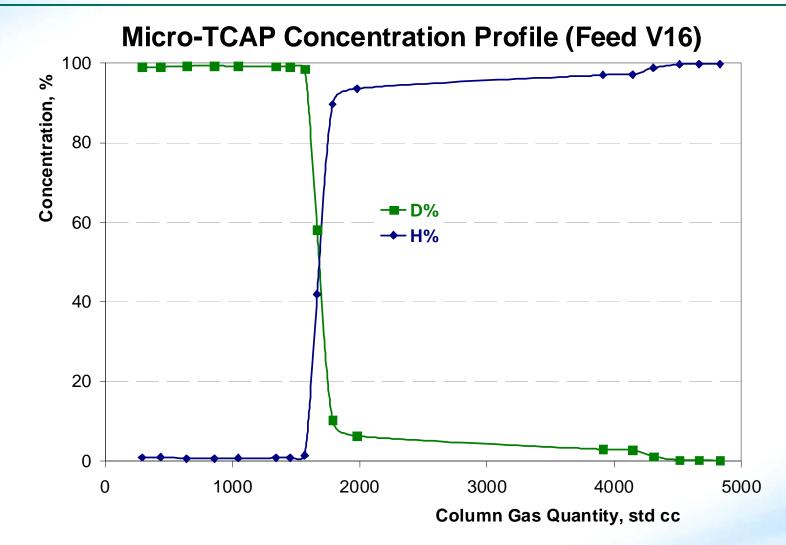
Compressor-free CTC-TCAP System

CTC-TCAP Experimental Unit



Advance 4: Micro-System Fits into a Small Glovebox

Micro-TCAP Typical T and P Cycles


Advance 5: Parameter Optimized with 50% Efforts

Test No.	A (inventory)	B (Delta P)	AxB CxD	C (hi press)	AxC BxD	AxD BxC	D (gas to middle)
1	1	1	1	1	1	1	1
2	1	1	1	2	2	2	2
3	1	2	2	1	1	2	2
4	1	2	2	2	2	1	1
5	2	1	2	1	2	1	2
6	2	1	2	2	1	2	1
7	2	2	1	1	2	2	1
8	2	2	1	2	1	1	2

Experimental Design via Taguchi's methods: orthogonal arrays

Reduced Cycles from 20 To 10

Summary of Benefits

- Double throughput;
- Reduction of tritium inventory to 1/2;
- Reduction of heat load to 25%;
- Footprint Reduction to 1/10th;
- Miniature version fit into a small glovebox;
- Reduced workload by implementing Experimental Design potential incentive in other tritium work.

Collaboration with Dr. Walter T. Shmayda – Laboratory for Laser Energetics, University of Rochester, for Micro-TCAP development is acknowledged.

