

Nuclear Energy

Office Of Nuclear Energy Sensors and Instrumentation Annual Review Meeting

Micro-Pocket Fission Detectors (MPFD) Troy Unruh Idaho National Laboratory

September 16-18, 2014

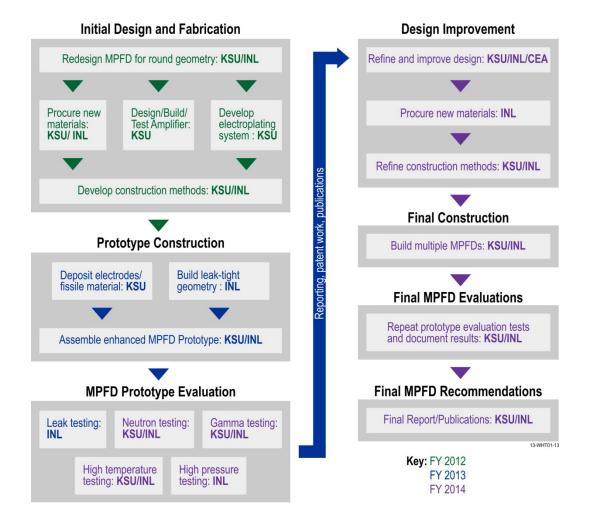
Project Overview

Nuclear Energy

Goal, and Objectives

• Develop, fabricate, and evaluate the performance of prototype, high temperature, compact, multi-purpose, fast and thermal fission chambers with integral temperature sensors

Participants


- » Troy Unruh and Joy Rempe; Idaho National Laboratory
- » Philip Ugorowski, Douglas McGregor, and Michael Reichenberger; Kansas State University
- » Jean-François Villard; Commissariate a l'energie atomique

Project Overview

Nuclear Energy

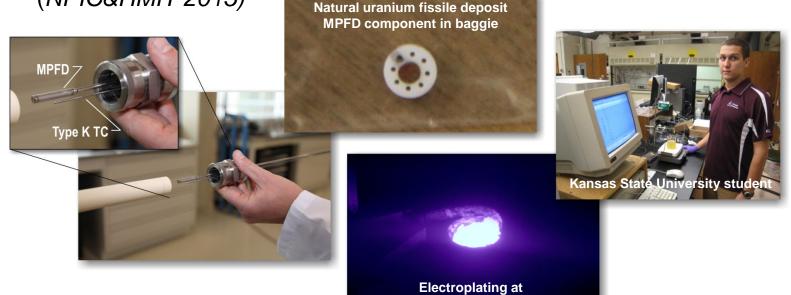
Schedule

Accomplishments

Nuclear Energy

FY14 Milestones, Deliverables and Outcomes

- Refined MPFD design
- Successfully completed enhanced MPFD for leak-tightness evaluations
- Successfully completed enhanced MPFD long duration performance in high temperature furnaces
- Successfully completed enhanced MPFD evaluations at KSU TRIGA reactor


Accomplishments

Nuclear Energy

FY14 Milestones, Deliverables and Outcomes (cont.)

- Issued final program report, INL/EXT-14-33026 "NEET Micro-Pocket Fission Detector- Final Project Report "
- Conference Publication, "Enhanced Micro Pocket Fission Detector Evaluations", for 9th International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human Machine Interface Technologies

(NPIC&HMIT 2015)

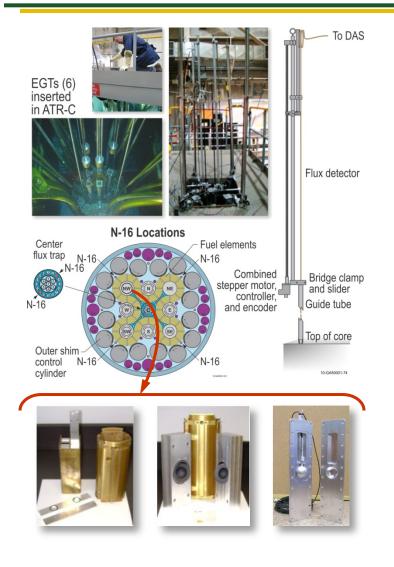
Kansas State University

Technology Impact

Nuclear Energy

Collected list of customer requirements through interactions with cognizant leads in NGNP, ARC, SMR, LWRS, FCRD, TREAT restart, and ATR NSUF programs

- Neutron sensitive (BOTH fast and thermal)
- Temperature sensitive with integral high-temperature thermocouple
- Compact size
- Radiation resistant
- High temperature and pressure compatibility using appropriate materials
- High accuracy, high resolution
- Flexibility (variable sensitivities, lifetimes and detector responses)
- Fast response
- Long lifetime


State-of-the-art sensor positions U.S. for leadership in irradiation testing

- Minimizes flux perturbation associated with typical real-time in-core sensors
- Permits 3D modeling and triangulation of data for validation
- Higher fidelity data for modeling and simulation of materials and fuels
- Potential to increase US MTR customer base (DOE-NE, NR, industry, regulators, etc.)

Technology Impact (Cont.)

Nuclear Energy

FCRD

- Enables in-pile measurement of fast flux, thermal flux, and temperature in high temperature irradiation tests and in transient tests
- Multi-purpose sensors provide high accuracy data required for validating new multi-scale fuel models

ATR NSUF

- Enables in-pile measurement of fast flux, thermal flux, and temperature in high temperature ATR NSUF irradiations
- Provides US MTR users high accuracy, high temperature flux and temperature data
- Ideally suited for cross-calibrations using specialized fixturing from previous NSUF detector calibration project

Technology Impact (Cont.)

Nuclear Energy

- Enables in-pile measurement of fast flux, thermal flux, and temperature in high temperature irradiation tests and on-line monitoring of conditions in first plant
- Multi-purpose sensors provide real-time data to validate model predictions during irradiation and during reactor operation
- Higher temperature version to be developed and evaluated in recentlyawarded NEET project.

LWRS / Industry Programs

- Enables in-pile measurement of fast flux, thermal flux, and temperature in fuels and materials irradiation tests
- Multi-purpose sensors provide data required for demonstrating performance of accident tolerant fuels during irradiation testing during steady-state and transient conditions
- Multi-purpose sensors provide real-time data for characterizing conditions during materials irradiations.

Technology Impact (Cont.)

Nuclear Energy

TREAT Restart

- Enables in-pile measurement of fast flux, thermal flux, and temperature in irradiation tests
- To be evaluated in recently-awarded TREAT Instrumentation IRP
- Multi-purpose sensors provide data for validating new multi-scale models.

Advanced SMR

- Enables in-pile measurement of fast flux, thermal flux, and temperature in high temperature irradiation tests
- Multi-purpose sensors provide high temperature real-time data to validate fuel and material properties during irradiation
- Long lifetime sensor ideal for in-vessel operational measurements where vessel stays closed

Nuclear Energy

- Three year Micro-Pocket Fission Detectors (MPFD) NEET project successfully completed all proposed work to develop a viable new sensor for simultaneous detection of thermal flux, fast flux, and temperature.
- Compact, multi-purpose advanced neutron detector is essential for high temperature, high pressure, high flux irradiations identified by LWRS, NGNP, ATR NSUF, FCRD, and Industry Programs
- Data from fast response, accurate, miniature neutron detector will be a critical tool for validating new high-fidelity multi-scale codes under development by DOE-NE