SPECTROSCOPIC ON-LINE MONITORING OF RADIOCHEMICAL STREAMS

NEET Review September 17, 2014

Sam Bryan, Tatiana Levitskaia, and Amanda Casella

sam.bryan@pnnl.gov
Pacific Northwest National Laboratory

Process Monitoring Can Be Achieved Throughout the Flowsheet

Nuclear Energy

Global vision:

Process monitoring/control at various points in flowsheet

Every flowsheet contains Raman and/or UV-vis-NIR active species

Coriolis and conductivity instruments can be used on all process streams

Monitoring Is Not Flowsheet Specific

Approach: Online Spectroscopic Measurements

Nuclear Energy

Raman measurements of

- Actinide oxide ions
- Organics: solvent components and complexants
- Inorganic oxo-anions (NO₃-, CO₃²-, OH-, SO₄²-, etc)
- Water, strong acid (H+), strong base (OH-)
- pH weak acid/base buffer systems

■ UV-vis-NIR measurements of

trivalent and tetravalent actinide and lanthanide ions

Potential Uses

- Process monitoring for safeguards verification (IAEA)
- Process control (operator)

■ Previous Experience: Hanford Site including deployments

- Real-time, online monitoring of high-level nuclear waste in tanks and to the waste pretreatment process
- Future Cost share demonstration of performance in an actual processing plant and enable comparison to existing methods
 - In discussions with SRS H Canyon

Methodology for on-line process monitor development: from proof-of-concept to final output

Vis-NIR measurements for Pu and Np model development

Nuclear Energy

Pu and Np concentration can be quantified over wide range of process chemistry conditions

- Pu(IV) concentration variable 0.1 to 10 mM
- Np(V) concentration, variable 0.05 to 3.3 mM
- Feed composition: 1.3 M $UO_2(NO_3)_2$ in 0.8 M HNO_3
- \triangleright $UO_2(NO_3)_2$ does not interfere with Pu(IV) measurements

Proof-of-Concept: Applicability of spectroscopic methods for commercial BWR ATM-109 fuel measurements

- Commercial fuel: ATM-109, BWR, Quad Cities I reactor; 70 MWd/kg; high burnup
- Fuel dissolved in HNO₃
- Performed batch contact on each aqueous feed with 30 vol% TBP-dodecane
- Feed, Organic, Raffinate phases successfully measured by
 - Raman, Vis-NIR
- Excellent Agreement of spectroscopic determination with ORIGEN code and ICP measurement

ATM-109	U	Pu	Np	Nd*
ICP-MS	0.721	8.99E-03	4.7E-04	8.40E-02
Spectroscopy	0.719	8.90E-03	4.7E-04	1.10E-02
Spectroscopic / ICP ratio	0.99	0.99	1.0	1.3

*concentrations in Molar units

Vis-NIR and Raman Multiplexer allows for multiple, simultaneous sensor locations on contactor system

Centrifugal contactor: flow diversion experiment

► test conditions

- •centrifugal contactors; 2-cm, 3600 rpm
- Aqueous phase: 11 mL/minOrganic phase: 11 mL/min

- Diversion experiment
 - •3 mL/min of feed during flow test
- •Spectroscopic probes and flow meters attached to feed, raffinate, and organic product streams

Spectroscopic measurements for diversion detection

Nuclear Energy

organic product (TBP/dodecane) phase

raffinate (aqueous) phase

Diversion quantification: mass flow plus spectroscopic measurement

Excellent agreement between process monitor and mass balance measurements

2.9 x 10⁻³ mol Nd³⁺ diverted based on mass balance

3.0 x 10⁻³ mol Nd³⁺ diverted based on process monitor analysis

delta from diversion

Motivation for weak acid (pH 2 – 6) measurements using spectroscopic signatures

Aqueous phase: 1 M total NO₃-, 1 mM total [Ln] + [Y], 1 M lactic acid, 0.05 M DTPA at various acidity.

- pH control is critical in TALSPEAK separations
- spectroscopic determination of pH desirable
- Simultaneous spectroscopic determination of lanthanides also desirable
- activities coordinated with Sigma
 Team for Minor Actinide Separations

pH monitoring: **Weak Acid Measurements**

Nuclear Energy

■ TALSPEAK and Advanced-TALSPEAK as Model Systems

Raman Spectroscopic measurements for pH monitoring

Lactic acid system

- Lactate, 0.25 1.0 M
- pH = 1.2 5

Citric acid system

- Citrate, 0.1 1.0 M
- Ionic Strength, 0.5 3.0 M Ionic Strength, 0.5 3.0 M
 - pH = 1.2 6

Effects of lanthanides and stripping complexants in aqueous phase

- DTPA, 0.01 0.05 M
- HEDTA, 0.05 0.25 M
- [Ln]_{tot}, ~ 20 mM

Effects of complexants in organic phase

HDEHP and HEH[EHP] / n-dodecane

Lactic acid buffer system

Nuclear Energy

$$H_3C$$

$$OH$$

$$OH$$

$$PK_a = 3.86$$

$$OH$$

$$OH$$

$$OH$$

$$OH$$

$$OH$$

$$OH$$

- Carboxylate group modified by pH changes
 - free acid (-CO₂H) to anion (-CO₂-)
 - Bending of –COH
- Can be used as spectroscopic probe of system pH

pH monitoring: Weak Acid Measurement trend with increasing pH

Nuclear Energy

pH Results based on Raman Spectroscopy

Nuclear Energy

pH and Nd3+ successfully monitored by Raman and vis-NIR spectroscopy during flow contactor test

The change in Nd³⁺ extraction was successfully monitored in both raffinate and organic product phases when the pH was modified with NaOH and HNO₃ additions.

When pH was increased, the extraction of Nd³⁺ decreased, as predicted.

Conclusions

Nuclear Energy

Using simulants and BWR Spent Fuel

- Demonstrated quantitative spectroscopic measurement on actual commercial fuel samples under fuel reprocessing conditions
 - Raman for on-line monitoring of U(VI), nitrate, and HNO₃ concentrations, for both aqueous and organic phases
 - Vis/NIR for on-line monitoring of Np(V/VI), Pu(IV/VI), Nd(III)

Demonstrated mass balance in on-line contactor system using spectroscopic process monitoring

- During real-time centrifugal contactor TBP/dodecane extraction
- Diversion of feed was quantitatively detected within contactor system
- pH monitoring and simultaneous Ln (Nd³+) monitoring demonstrated with TALSPEAK system

Future plans for on-line process monitoring

- Collaborative demonstration on commercial (larger) scale :
 - H-Canyon (SRS), others

Acknowledgements

Nuclear Energy

■ U.S. Department of Energy (DOE)

- Fuel Cycle Research and Development (FCR&D), Separations Campaign (NE)
- NNSA Office of Nonproliferation and International Security (NA-24)
- PNNL's Sustainable Nuclear Power Initiative (SNPI)