Nuclear Energy

Office Of Nuclear Energy Sensors and Instrumentation Annual Review Meeting

Key Technology Demonstration for Under Sodium Viewing

Hual-Te Chien Argonne National Laboratory

September 16-18, 2014

Work Package AR-14AN230101 Subtask: Under Sodium Viewing

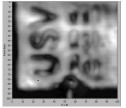
Subtask Relevancy

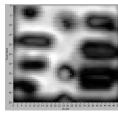
Nuclear Energy

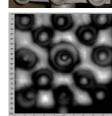
- Re-establish U.S. technology leadership for advanced fast reactor technology and develop advanced I&C technologies for nuclear energy applications
 - Developing an enabling under sodium viewing (USV) technique for nondestructive examination (NDE) of SFRs:
 - Real-time operation or maintenance monitoring of SFR at high temperatures and high radiation in-sodium
 - In-service inspection and repair of components, structures, and systems within reactor core or steam generators

Technical Approach/Accomplishments/Results

- Constructed a USV test facility for automated insodium test and signal/image processing
- Successfully developed and demonstrated ultrasonic waveguide transduce (UWT) technique with real-time defect detection resolutions of 0.5 mm in both width and depth at temperature up to 650°F in sodium.
- Developed and tested a brush-type ultrasonic waveguide transducer (BUWT) phased array in water. Mockup for in-sodium testing is in-progress.
- Developed two submergible high-temperature transducers and successfully tested in hot oil up to 320°F with real-time defect detection resolutions of 0.5 mm in both width and depth.


Real-Time Intensity Images


In-sodium Test @ 350°F



Expected Deliverable & Schedule

- Development of BUWT phased-array (3/15)
- Development of sodium-submergible hightemperature transducers (6/15)
- In-sodium test of BUWT phase array and submergible HT-transducers (9/15)
- Identify commercial partners and in-reactor USV system integration pathways (9/15)
- Continue CEA-DOE-JAEA collaboration on In Service Inspection and Repair (ISI&R)
- M3 and M2 progress reports (3/15 & 9/15)

Project Overview

Nuclear Energy

■ Goal and Objectives

- Re-establish U.S. technology leadership in advanced fast reactor technology and develop advanced I&C technologies for nuclear energy applications
- Developing an enabling under sodium viewing (USV) system by using a novel ultrasonic waveguide transducer technique for
 - Real-time operation or maintenance monitoring of SFR under high temperatures and high radiation with high resolution in-sodium
 - In-service inspection and repair of components, structures, and systems within reactor core or steam generators

■ Participants

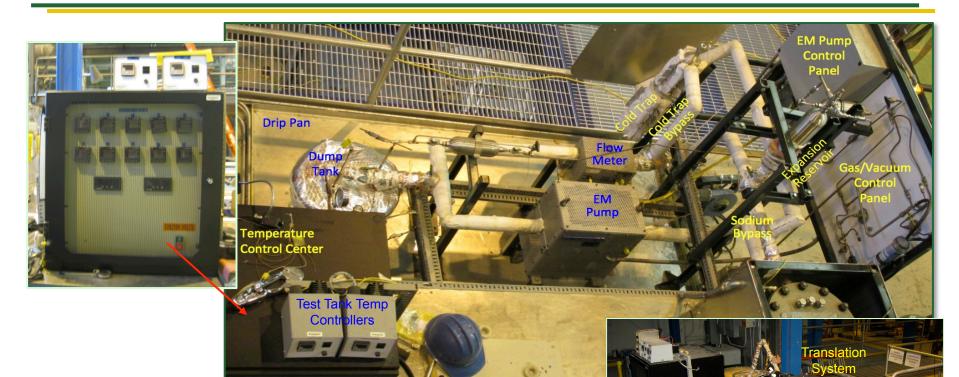
Hual-Te Chien, Dave Engel, William P. Lawrence, Shuh-Haw Sheen Nuclear Engineering Division, Argonne National Laboratory

■ Schedule

Task Name	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Continue in-sodium test of UWT		2.6										
Develop brush-type waveguide phase array						\mapsto						
Mockup of brush-type waveguide phase array						МЗ				\rightarrow		
Develop High-temperature transduce		Į,	j,						100	\rightarrow		
Conduct in-sodium test of phase array transducer		5		s i					1.0	,		\longrightarrow
ANL M2 report and ANL/PNNL joint annual report									6.	2		\longrightarrow

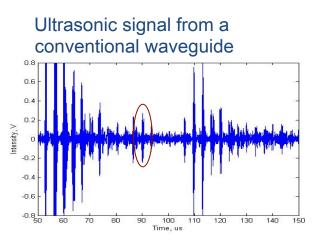
Accomplishments

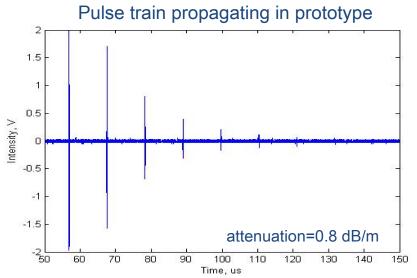
■ Milestones and Deliverables

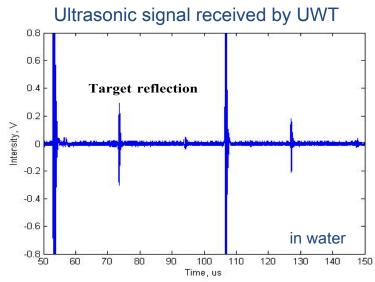

M3 Linear-array waveguide transducer under-sodium tests 4/30/2014 Completed M2 Array-waveguide USV system development 9/30/2014

■ Accomplishments of FY14

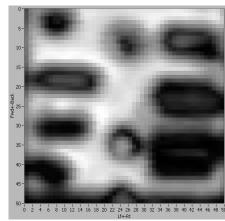
- Upgraded the USV test facility with automated real-time in-sodium monitoring/inspection and improved signal/image processing (Dec 2013)
- Successfully developed and demonstrated ultrasonic waveguide transducer (UWT) technique with real-time defect detection sensitivities of 0.5 mm in both width and depth at temperature up to 650°F in sodium. (May 2104)
- Developed and tested a brush-type ultrasonic waveguide transducer (BUWT) phased array in water. (July 2104) Mockup for in-sodium test is in-progress.
- Developed two submergible high-temperature transducers and successfully tested in hot oil up to 320°F with real-time defect detection sensitivities of 0.5 mm in both width and depth. (Aug 2104)


USV Test Facility


- Large straight-up tank to accommodate linear-array transducers
- □ Accept larger targets and components
- Better tank design, better fabrication, and safer operation
- □ Easier component/target setup, testing, and replacement
- Precise temperature control using digital temperature controllers
- Tanks sealed tighter and using cold trap to keep sodium clean
- EM pump to circulate sodium and reduce sodium wetting time
- □ Expansion reservoir to reduce loop stresses caused by sodium's thermal expansion

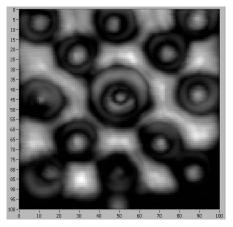


Argonne UWT Prototype

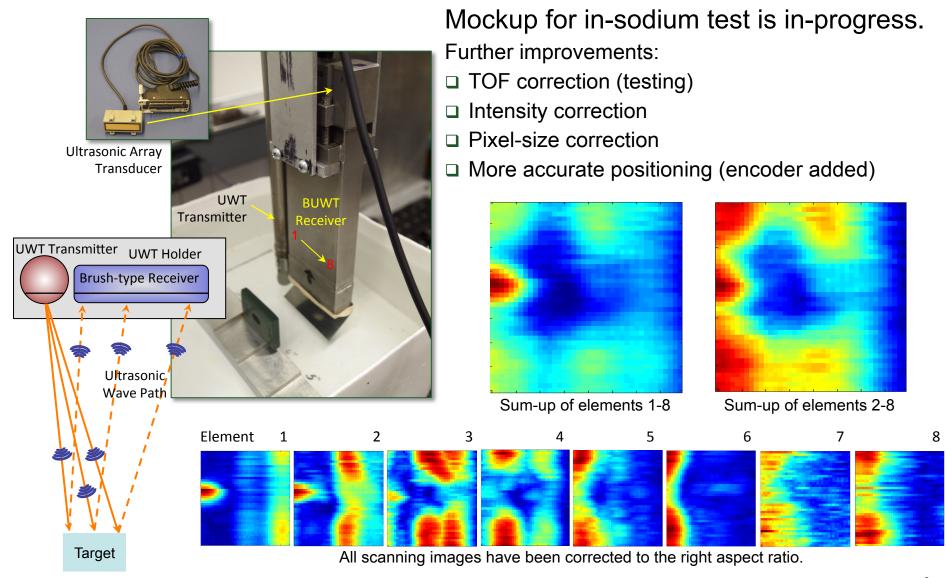

In-Sodium Test (350°F)

Real-time Intensity Images

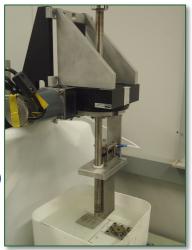
USV Target

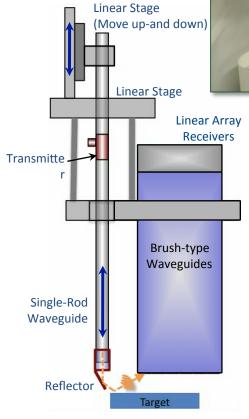

Joyo Pin Target

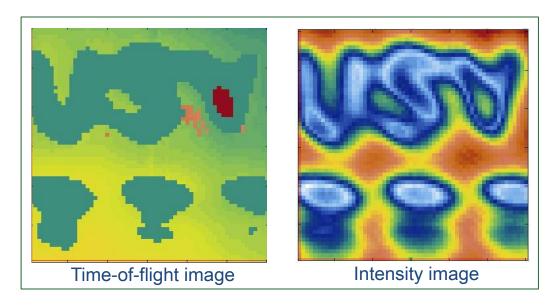
Fuel-Pin Target



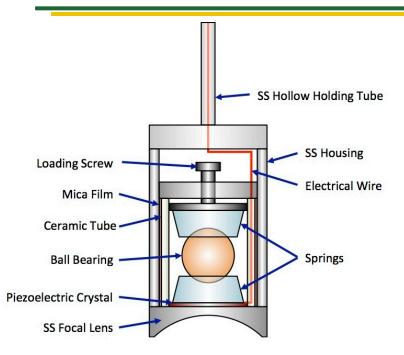
- □ Achieved real-time defect detection sensitivities of 0.5 mm in both width and depth at temperature up to 650°F in sodium.
- □ Capable of detecting Joyo pin laying under different orientations
- □ Capable of identifying components with complex geometry and thin tubing


BUWT for Sideway Scanning


BUWT for Downward Scanning


Nuclear Energy

Further improvements:


- □ TOF correction (testing)
- □ Intensity correction
- More accurate positioning (encoder added)

High-Temperature Submergible Transducer Prototype

HT Transducer prototype consists of

- Housing assembly (SS housing and focal lens)
- Dry-coupling assembly
- Mechanical loading assembly
- PZT-5A piezoelectric element (Diameter: 0.5", operating frequency: 2.25MHz)

Max operating temperature: ~350°F

Dimensions: 1.125" in diameter and 2" in length

SS Focus Lens

SS Housing

Ceramic Tube

Mica Film and Spring and Ball Bearing

Loading Assembly

Dry-coupling Assembly

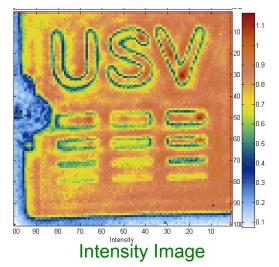
Housing Assembly

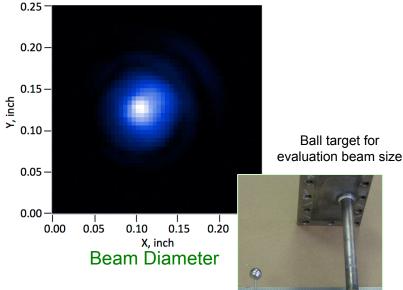
High-Temperature Submergible Transducer

Nuclear Energy

(Under Ambient Condition)

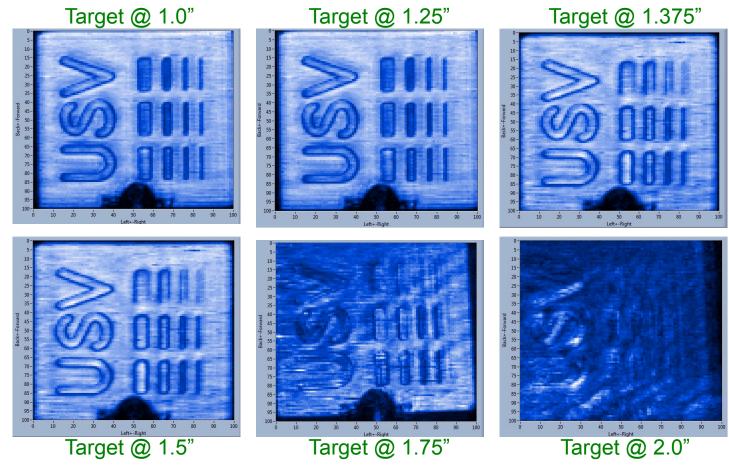
Water Test




Oil Test

40 30 20 10

Intensity Image


- Achieved detection sensitivities of 0.5 mm in both width and depth
- Beam diameter < 0.2" @ FD=1" (Following the ASTM E1065-08 Test Std)

High-Temperature Submergible Transducer

Nuclear Energy

(Oil Test, Real-Time Intensity Images, 320°F)

- Achieved detection sensitivities of 0.5 mm in both width and depth, even target is positing 3/4" away from the UWT's focal point (FD=1")
- □ Still maintaining same sensitivities after 2 weeks of hot oil tests (320°F)
- □ Will develop very HT-HR submergible transducers with ZnO (>1,400°F) and AlN (>1,800°F)

Future Plan

- Continue the development of sodium-submersible BUWT phased-array
- Development of sodium-submergible transducers (ZnO and AlN) with very high temperature and radiation resistances
- Evaluate detection sensitivities of submergible BUWT phase array and HT-HR transducers in sodium
- Conduct reliability and probability of detection (POD) with thermal cycling, signal, and imaging processing methodologies for loose-part detection and component inspection
- Identify commercial partners and in-reactor USV system integration pathways
- Continue CEA-DOE-JAEA collaboration on In Service Inspection and Repair (ISI&R)
- Complete M3 and M2 progress reports

Technology Impact

- Currently there is no reliable inspection/monitoring method for reactor core of SFRs due to challenges associated with liquid metal cooled reactors (high temperature, high radiation, and corrosive environment).
- The USV technology being developed under this project will play a critical role in safe operation of advanced reactor technologies.
- This enabling NDE technology will benefit other areas of reactor inspection needs, particularly those requiring inspection/monitoring in harsh environment.
- The data provided by USV system complements on-line monitoring data obtained by I&C system of future SFRs.
- Successful deployment of this technology will improve reliability, ensure safety, and reduce operational costs for nuclear stakeholders.

Conclusion

- Lead the USV technique development (between US, France, Japan, and Korea)
- Developed and demonstrated the UWT technique for USV with real-time defect detection sensitivities of 0.5 mm in both width and depth in sodium @ 650°F
- Developed and demonstrated high-temperature submergible ultrasonic transducers for USV with real-time defect detection sensitivities of 0.5 mm in both width and depth in oil @ 320°F
- Enable real-time monitoring of reactor core and in-service inspection, and complements on-line monitoring data obtained by I&C system of SFRs
- Constructed a under sodium test facility for in-sodium tests of materials and components, and study of sodium-water reaction