

VOLTTRON™ 0 to 3.0 History

JEREME HAACK

Pacific Northwest National Laboratory

Software Framework for Transactive Energy: VOLTTRON™, VTARI, Arlington, VA

VOLTTRON Team

VOLTTRON Team

Software Development Team

- Srinivas Katipamula
- Bora Akyol
- Jereme Haack
- Brandon Carpenter
- Kyle Monson
- Craig Allwardt
- Poorva Sharma
- Tim Kang
- **Casey Neubauer**
- **Robert Lutes**
- Dan Johnson

Application Development Team

- Srinivas Katipamula
- **Robert Lutes**
- Wooyun Kim
- **Rick Pratt**
- Carl Miller
- Weimin Wang
- Siddartha Goyal
- Michael Brambley
- Lucy Huang
- Chad Corbin
- He Hao

The Challenge

- Improving operating efficiency of buildings
- Providing grid services across buildings and the grid
 - Smart loads in homes, offices, industry
 - Millions of electric vehicles
 - Distributed renewable energy
 - Reliability and security

Pacific Northwest

NATIONAL LABORATORY Proudly Operated by **Battelle** Since 1965

Application Challenges

- Managing and "optimizing" enduse loads
 - Residential, commercial and industrial
- Increasing end-use efficiencies
- Integrating storage at multiple layers
- Enabling energy coordination and trading between buildings and between buildings and grid

Technology Challenges

- In some buildings, there is too much data, not enough information
 - Rapid deployment of networked, affordable sensors and controllers
- Lack of scalable and fault tolerant control and diagnostics
- Lack of secure and reliable communication
- Tight, vertical integration of single vendor products
- Lack of a cross-vendor "App Store" for best-of-breed energy application solutions
- Evolving standards landscape for transactive energy
- Lack of a reference platform for R&D use

A Distributed System Solution

- Building systems that operate at peak efficiency because they are self aware and self correcting and mitigate:
 - Cloud cover in a neighborhood filled with rooftop solar panels
 - A neighborhood where everyone owns an EV and comes home at the same time on a hot day and starts to charge
 - Household appliances that communicate directly to coordinate energy use and shift load
- Benefits
 - Lower bills for consumers
 - More predictable and even loads for utilities
 - Quicker response to mitigate variable distributed power generation
- VOLTTRON is one such platform that addresses many of these challenges

What is VOLTTRON?

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

- VOLTTRON is an application platform (e.g. Android, iOS) for distributed sensing and control applications
- VOLTTRON is not a protocol
 - A protocol, such as SEP2.0. or OpenADR, are implemented as applications
- VOLTTRON is not an application such as demand response
 - Demand response can be implemented as an application on top of VOLTTRON
- VOLTTRON is open, flexible and already benefits from community support and development

VOLTTRON Attributes

- Provides a single point of contact between applications, devices, and external resources
 - Isolates applications from the details of devices being controlled
 - Additional resources can easily be added and utilized through the message bus without requiring changes to existing resources/agents
 - Applications can specify data of interest
 - Applications can publish their own events/data for use by other agents or for storage
- Device communication
 - Drivers for communicating with Modbus and BACnet enabled devices
 - Custom communication schemes can be supported
- Platform Features
 - Scheduler Handles locking control of devices (reading does not require a lock)
 - Application reserves a timeslot
 - Ease of application development
 - Collection of utilities and base applications to simplify development
 - Goal is to allow researchers to focus on implementing their algorithm, not dealing with the specifics of the platform
 - Data archiver devices readings and application results stored to a historian

PNNL Internal Development

Proudly Operated by Battelle Since 1965

- 2010 PNNL started a Future Power Grid Initiative
- VOLTTRON proposed to deploy intelligence into the Smart Grid
- Identified gap in agent platforms which meet security and resource management requirements of the domain

VOLTTRON LDRD

- Requirements gathering
- Initial simulations
- Build and deploy platform on demonstration testbed
- Deploy into instrumented home

RTU Network Project

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

- Integrating platform for RTU Network Project
 - Coordinate behavior of rooftop HVAC units
 - Deploy researcher control algorithms
 - Provide single point of contact for
 - Appliances
 - Data historian
 - External resources
- Platform supported applications developed by
 - ORNL
 - LBNL
 - PNNL

VOLTTRON 1.0 – 1.2

- VOLTTRON platform based on PNNL research and needs of the RTU Network project
 - Open Source Reimplementation omitting patented features
 - Integrates researcher applications, devices, and cloud applications and resources
- 1.0 Focused on building up the framework
 - Agent execution environment
 - Basic platform services
 - Modbus driver
- 1.2 Expanded capabilities of platform
 - BACnet support
 - Multi-node communication
 - Released on GitHub

VOLTTRON 2.0

- 2.0 Incorporated PNNL IP from the original research
 - Different license: Free for buildings domain
- Resource monitoring
 - Agents must present an execution contract to the platform stating their resource requirements
 - Platform rejects agents which it cannot support
 - Expandable framework for specify additional resources
- Agent signing and verification (next slide)
- Agent Mobility
 - Admin can send an agent to another platform for deployment/updating
 - Agent can request to move
 - Agent can bring along working files as part of 'mutable luggage'
 - Receiving platform verifies agent package and examines resource contract before executing agent

Agent Transport Payload

- Agent package contains multiple layers which can be signed by different entities
 - Creator of code
 - Administrator of 'Scope of Influence'/Deployment
 - Instantiator of agent
 - Most recent platform (for mobile agents)
- Each level verified before agent is allowed to run
- Entities cannot change content of other layers

Pacific Northwest

VOLTTRON 3.0

- Improve the modularity, flexibility and manageability of the VOLTTRON platform
 - Lets people use whatever technology they want
 - Makes it easier to contribute back new drivers, storage/historian strategies, other services
- Bring VOLTTRON closer to acceptance by vendor community and for commercial deployments
 - Need to gain visibility into system
 - Upgrade remotely
 - Easy way of seeing the status/resources of the platform especially when managing multiple systems
 - Address feedback from FY14 User and Vendor engagements

Modularized Historian

Proudly Operated by Battelle Since 1965 Agent Historian sMAP Message Bus Historian Azure Historian DB

Driver

Device

- Historians can be built for any storage solution
- Previous versions did not have option for local storage
- BaseHistorian
 - Can be extended for any solution
 - Handles subscribing to Bus
 - Local cache

Modularized Drivers

- Standardized creating custom drivers to scrape data and publish to the message bus
- Simplify developing drivers and contributing new capabilities back to VOLTTRON
- Abstracted out driver interfaces allowing Actuator Agent to handle controlling devices via any protocol

VOLTTRON Interconnect Protocol

- Increase security of the message bus and allow direct communication where appropriate
 - Platform service
 - Agent service
 - Agent Agent large transfer
- New communication model underneath VOLTTRON Message Bus
 - Compatibility layer so changes are transparent to existing agents
- VOLTTRON now requires only a single socket
- Message Bus can be secured
 - Authenticated publishers
 - Publishers can limit subscribers

Management Agent

- PlatformAgent acts as manager for the platform
 - Send commands to agents
 - Enables monitoring of health of agents and platform
 - Exposes status to other platforms/web console
 - Support for applications which analyze data and issue alerts (behavior out of norm)

VOLTTRON Management Central

- Improve Visibility of Deployed Platforms
- Previous interface to the platform "admin centric"
- Makes use of the service exposed by the Management Agent
- VOLTTRON Management Dashboard
 - Allow for better insight into the state of the platform and agents
 - Does not require expert user
 - Quickly see overview of platforms being monitored

VOLTERON** Platforms Begig EV2 abbc25frd-3718-4222-ad25-ae44d295cdaa | Agents: 3 running, 0 stopped, 4 installed Pandal WH1 beefdr2a-625c-4382-900d-003eaaa1d1be | Agents: 3 running, 0 stopped, 3 installed Pandas Z EV1 8755999d-e298-47b2-bb23-8a369240d220 | Agents: 3 running, 0 stopped, 4 installed Rock WH2 cdb3282e-7517-4a8b-b76d-cfe5833ed7a6 | Agents: 3 running, 0 stopped, 4 installed V Platform b5c38dfd-88ed-412b-8a4c-aadd68ec7ae5 | Agents: 3 running, 0 stopped, 4 installed

Proposed VOLTTRON 4.0

- Exploiting existing capabilities for more complex demonstrations
 - Distributed Multi-Agent Energy Efficiency application
- VOLTTRON Management Central enhancement
 - Closer integration with VOLTTRON Central Analytics
 - Real-time analytics
- Continue to enhance VOLTTRON security
- Utilize VOLTTRON as a way to increase security of underlying platform
 - Cybersecurity agent application
- Community priorities
 - Common capability needs expressed by community
- VOLTTRON Hackathon
 - Activity to spur outside use of VOLTTRON for new applications

Future Goals

- Compelling VOLTTRON functionality and interoperability demonstrations with major partners to serve as an acceptance and marketing tool
- VOLTTRON Community Portal with third party applications store
- Expand capabilities of VOLTTRON as the foundational controls operating system over which third party applications can be deployed
- Continue to build VOLTTRON Community with industry, federal laboratories and academic institutions

VOLTTRON Resources

GitHub

- https://github.com/VOLTTRON/volttron.git
- <u>https://github.com/VOLTTRON/volttron/wiki</u>
- Email: volttron@pnnl.gov
- Bi-weekly office hours, email to be added
 - Planning to start a series of webinars for 3.0 features