12 Volt Auxiliary Load On-road Analysis

PI: Barney Carlson
Idaho National Laboratory
Energy Storage & Transportation Systems
Advanced Vehicle Testing Activity (AVTA)

June 10, 2015

2015 DOE Vehicle Technologies Program Annual Merit Review
INL/MIS-15-34808

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
FY15
• Add sensors into vehicles
• Characterize individual auxiliary loads
• Collect and analyze data from on-road operation
• Publish quarterly reports of findings

Barriers
• Lack of the availability of real world, on-road driving data detailing
 • 12V auxiliary loads
 • driving characteristics

Budget
• FY15: $ 150k

Partners
• Intertek CECET, Phoenix AZ
• Argonne’s APRF (dynamometer testing)
• OEMs
 • Chrysler
 • Ford
 • GM
Objective / Relevance

• Quantify the real world, on-road auxiliary loads and driving characteristics from multiple non-electrified vehicle models
 – To support OEMs request for real world data to support advanced technology systems with respect to off-cycle fuel economy credit
 • “Off-Table” Alternative EPA-Approved Methodology

• This on-road data collection and published results
 – Can be used by OEMs / Suppliers for possible off-cycle credits for advanced technologies
 – Gain understanding of variation of auxiliary loads due to temperature, driving condition, and driving style
Milestones

- Data collection commenced after current and voltage sensors were added
 - May 2014
 - 2012 Honda Civic CNG
 - 2013 Volkswagen Jetta TDI
 - August 2014
 - 2014 Chevrolet Cruze Diesel
 - 2014 Mazda 3 i-ELOOP
- Individual auxiliary loads characterized during steady state operation
 - Examples: lights, fans, heated seats, elec. power steering, etc.
- Benchmark over standard dynamometer drive cycles (Argonne’s APRF)
- Published Fact Sheets
 - Summer 2014, Autumn 2014, Winter 2015, Project to Date
 - 2012 Honda Civic CNG
 - 2013 VW Jetta TDI
 - Autumn 2014, Winter 2015
 - 2014 Chevrolet Cruze Diesel
 - 2014 Mazda 3 i-eLoop
- Duration: Data collection is on-going for 12 months for each vehicle model
Approach:

• Leverage vehicles operating in the AVTE fleet
• Add sensors (current and voltage) to measure auxiliary loads
• Testing and Evaluation
 – Characterize each individual auxiliary load (steady state) for each vehicle model
 • Example: headlights, interior fan, heated seat, etc.
 – Benchmark auxiliary loads over standardized drive cycles
 • Argonne APRF dynamometer test facility
 – Collect on-road data during all driving conditions
 – Process and organize data into SQL database
 – Analyze data for auxiliary load and interdependence with external factors and utilization
 – Publish results
 • Quarterly basis (for seasonal comparison)
 • Summarized results
Approach: Vehicles Evaluated

- 4 of each model
 - 2012 Honda Civic CNG
 - 2013 Volkswagen Jetta TDI
 - 2014 Chevrolet Cruze Diesel
 - 2014 Mazda 3 i-ELOOP
Accomplishments:

- Characterize auxiliary loads
 - Loads are characterized from standardized dynamometer testing
 - Auto climate control set to 72°F for all tests
 - Significant A/C operation during 95°F tests
 - Significant heater operation during 20°F tests
 - Individual loads are operated in steady state condition
 - Figures shows example results of each load increase over base load from VW Jetta TDI
 - Base load with engine running and all accessories off
 - 258 watts
Accomplishments:

• Comparison of vehicle models

Notable attributes:
• Honda Civic CNG
 – No fuel pump
 – No seat heaters
 – No rear defroster
 – Hydraulic power steering
• Mazda 3
 – Fog lights

<table>
<thead>
<tr>
<th></th>
<th>VW Jetta TDI</th>
<th>Chevy Cruze Diesel</th>
<th>Honda Civic CNG</th>
<th>Mazda 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer 2014</td>
<td>796 watts</td>
<td>N/A</td>
<td>338 watts</td>
<td>N/A</td>
</tr>
<tr>
<td>Autumn 2014</td>
<td>657 watts</td>
<td>555 watts</td>
<td>297 watts</td>
<td>405 watts</td>
</tr>
<tr>
<td>Winter 2015</td>
<td>491 watts</td>
<td>570 watts</td>
<td>293 watts</td>
<td>441 watts</td>
</tr>
<tr>
<td>Overall Avg.</td>
<td>667 watts</td>
<td>562 watts</td>
<td>308 watts</td>
<td>425 watts</td>
</tr>
</tbody>
</table>
Accomplishments:

On-road auxiliary loads results

- Example:
 - Impact to avg. Auxiliary Load from change in Ambient Temperature
 - JettaTDI: 425 to 1,100 watts
 - Impact due to vehicle lighting (evening)
 - JettaTDI: avg. of 150 watts between 19:00 and 5:00
Accomplishments:

On-road driving characteristics results

• Calculated for each vehicle model
 – Average percent Idle Time
 – Time Parked (between drives)
 – Distribution of vehicle speed and acceleration

• Example from varying vehicle utilization:
 – 36.9% Idle time
 • Mostly city driving (92.9% mi in city)
 – 19.1% Idle time
 • Mostly Hwy driving (24.6% mi in city)
Accomplishments:
Example Fact Sheet

http://avt.inel.gov/ice.shtml
This project is new for this year.
Future Work:

• Continue data collection on the 4 models through a minimum of one year of data collection and analysis

• Continue to publish:
 – Quarterly fact sheets
 – Project to Date fact sheets

• Publish white paper on results and findings
 – On-road results
 – Dynamometer testing results

• Evaluate additional vehicles (non-electrified) as available through AVTE
Summary / Comments:

• Completed:
• Data collection commenced
 – May 2014 and August 2014 for the respective models
• Individual auxiliary loads characterized during steady state operation
 – Examples: lights, fans, heated seats, elec. power steering, etc.
• Benchmarked auxiliary loads over standard dynamometer drive cycles
 – Argonne’s APRF dynamometer test facility
• Published Fact Sheets
 – Quarterly
 – Project to Date (current summary of results)
• Duration: Data collection is on-going for minimum of 12 months for each vehicle model

• These results provide a referenceable and publically available source of auxiliary load and driving characteristic data
Acknowledgement

This work is supported by the U.S. Department of Energy’s EERE Vehicle Technologies Office

More Information

http://avt.inl.gov