ParaChoice

Parametric Vehicle Choice Modeling

Dawn Manley (PI), Rebecca Levinson, Garrett Barter, Todd West
Sandia National Laboratories
SAND 2015-2785 C
Project ID#: VAN014

2015 DOE Vehicle Technologies Office
Annual Merit Review and Peer Evaluation Meeting
June 11, 2015

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Start date: FY14
- End date: FY15

Budget
- FY14 funding: $100K
 - Additional support from US-China Clean Energy Research Center – Clean Vehicle Consortium
 - Workshop support from FCTO, Toyota, and AGA
- FY15 funding: $150K

Barriers
- Availability of alternative fuel and charging infrastructure
- Availability of AFVs and electric drive vehicles
- Uncertainty in vehicle choice models and projections
- Identification of largest leverage points for reducing petroleum consumption and GHG emissions

Partners
- Interactions / Collaborations:
 - Ford: Real World Driving Cycles
 - Toyota and American Gas Association: Workshop
 - DOT
 - ANL, ORNL, NREL, Energetics

Project was not reviewed in previous Merit Reviews
Relevance: Identify opportunities, challenges, and tradeoffs at the intersection of multiple alternative fuels & technologies

- **Approach:** Convened workshop to understand context from diverse stakeholders – “Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles,” September 2014
 - For what **markets** are natural gas and hydrogen in direct competition, and how might they be better suited for different transportation applications?
 - How do we get fueling **stations** built? Are there business models that can simultaneously support hydrogen and natural gas?
 - What can we learn from programs and policies that have been implemented at the **state** level?

- **Approach:** Conduct parametric analyses to capture dynamics & competition that influence the light duty vehicle, fuel, & infrastructure mix
 - Addresses a system-level analysis layer with input from other VTO models to explore the uncertainty and trade space (with 10,000s of model runs) that is not accessible in individual scenario-focused studies
 - Identifies the set of conditions that must be true to reach performance goals, sensitivities and tradeoffs between technology investments, market incentives, and modeling uncertainty
Milestones and status

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Milestone</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Incorporate data sets and model edits</td>
<td>Complete – Updated baseline datasets & capability to analyze by region. Reviewed at DOE Vehicle Choice Modeling Workshop.</td>
</tr>
<tr>
<td>Q2</td>
<td>Complete model testing and initial analysis</td>
<td>Complete – Conducted assessment of factors that affect adoption & electrified miles driven by BEVs & PHEVs.</td>
</tr>
<tr>
<td>Q3</td>
<td>Complete analysis</td>
<td>On track</td>
</tr>
<tr>
<td>Q4</td>
<td>Draft and submit publication</td>
<td>On track</td>
</tr>
</tbody>
</table>
Modeling Approach: ParaChoice captures interactions and feedback across energy supply, carriers, and light duty vehicles.

Focus for FY15: Understanding the factors that affect adoption and electrified miles driven by battery electric and plug-in hybrid vehicles.

Model background presented in AMR Project SA055 – Hydrogen Analysis with ParaChoice Model, 6/9/15, 3:15pm, Crystal City, Room/Salon F.
Modeling Approach: Model baseline inputs are taken from published sources when possible, and many are parameterized.

Energy sources
- Oil, coal, NG: EIA Annual Energy Outlook 2014 price
- Biomass: State supply curves Billion Ton Study

Fuel conversion and distribution
- Conversion costs, GHG emissions derived from GREET
- RFS grain mandate is satisfied first, then cellulosic
- Ethanol can be transported between regions

State variations
- Driver demographics – VMT intensity, urban-suburban-rural, dwelling type
- Electricity provided by marginal mix
- Subsidies & incentives

Vehicle model
- Consumer choice is nested, multinomial logit type (like MA3T)
- Vehicle efficiency, cost, battery capacity from Autonomie 2011
- Three year consumer payback period
- CAFE satisfied
Modeling Approach/Validation: Compared results with historical data to validate model logic and sensitivity to input assumptions.

With accurate input data, model results follow actual sales trends.

Hybrid Sales

<table>
<thead>
<tr>
<th>Sales Fraction</th>
<th>Aug-12</th>
<th>Mar-13</th>
<th>Oct-13</th>
<th>Apr-14</th>
<th>Nov-14</th>
<th>May-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybridcars.com</td>
<td>0.01</td>
<td>0.015</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>No Incentives</td>
<td>0.02</td>
<td>0.03</td>
<td>0.025</td>
<td>0.04</td>
<td>0.05</td>
<td>0.045</td>
</tr>
<tr>
<td>Base Case</td>
<td>0.015</td>
<td>0.03</td>
<td>0.02</td>
<td>0.035</td>
<td>0.045</td>
<td>0.05</td>
</tr>
<tr>
<td>Correct Model Availability</td>
<td>0.02</td>
<td>0.03</td>
<td>0.025</td>
<td>0.04</td>
<td>0.05</td>
<td>0.045</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybridcars.com</td>
<td>Actual monthly sales</td>
</tr>
<tr>
<td>Base case</td>
<td>Replaced commodity and technology projections with actual prices</td>
</tr>
<tr>
<td>No incentives</td>
<td>Removed incentives</td>
</tr>
<tr>
<td>Correct model availability</td>
<td>Replaced projected model availability with actual numbers</td>
</tr>
</tbody>
</table>

Note: Hybrid sales VERY sensitive to model availability.
Modeling Approach: Parametric studies focus on one, two, and all parameter variations to explore the trade space.

Contour features reveal trade-space insights.

Parameter space is sampled 1000 times to explore tradeoffs.

Sample output from a single-scenario case.

Tradeoff between battery cost uncertainty and engine efficiency.
Accomplishments: 2050 Baseline Results for Stock, Sales, Miles Driven

Even with significant penetration of alternative vehicles, the majority of miles driven utilize petroleum fuels.

FY15 accomplishments focus: Understanding factors that affect adoption and electrified miles driven by BEVs & PHEVs.
Accomplishments: Examining 2050 sales by state illustrates significant impact of incentives

States with $1875 hybrid & PHEV incentive

<table>
<thead>
<tr>
<th>2050 Sales</th>
<th>Hybrid %</th>
<th>PHEV10 %</th>
<th>PHEV40 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Avg.</td>
<td>27.7</td>
<td>27.8</td>
<td>8.1</td>
</tr>
<tr>
<td>GA</td>
<td>24.0</td>
<td>20.3</td>
<td>5.1</td>
</tr>
<tr>
<td>FL</td>
<td>35.8</td>
<td>32.3</td>
<td>9.3</td>
</tr>
<tr>
<td>NY</td>
<td>37.4</td>
<td>31.7</td>
<td>8.5</td>
</tr>
<tr>
<td>NJ</td>
<td>36.4</td>
<td>31.5</td>
<td>8.4</td>
</tr>
</tbody>
</table>

Other notable incentives

<table>
<thead>
<tr>
<th>2050 Vehicle incentives</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT</td>
</tr>
<tr>
<td>AZ</td>
</tr>
<tr>
<td>IL</td>
</tr>
<tr>
<td>GA</td>
</tr>
</tbody>
</table>
Accomplishments: Single family (SF) and other dwellings show similar PHEV purchase rates

BEVs are almost exclusively found in single family homes where dedicated charging is available.

- CNG adoption is similar across dwelling types.
- PHEV adoption is also remarkably similar.
- We assume serial driving for PHEVs in SF – a large fraction of PHEV miles electrified.
- Charge-sustaining driving for PHEVs in other yields few electrified miles.

Why is PHEV adoption so similar?

<table>
<thead>
<tr>
<th>% of 2050 sales</th>
<th>ICE</th>
<th>Hybrid</th>
<th>PHEV10</th>
<th>PHEV40</th>
<th>BEVs</th>
<th>CNGs</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF</td>
<td>15.7</td>
<td>26.0</td>
<td>27.3</td>
<td>8.4</td>
<td>6.7</td>
<td>16.0</td>
</tr>
<tr>
<td>Other</td>
<td>17.2</td>
<td>30.3</td>
<td>28.7</td>
<td>7.8</td>
<td>0.0</td>
<td>16.0</td>
</tr>
</tbody>
</table>
Accomplishments: Vehicle efficiency (in charge sustaining mode) is driving PHEV adoption among non-single family home dwellers

<table>
<thead>
<tr>
<th></th>
<th>SI</th>
<th>SI Hybrid</th>
<th>SI PHEV10</th>
<th>SI PHEV40</th>
<th>BEV150</th>
</tr>
</thead>
<tbody>
<tr>
<td>2045 CS efficiencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mpg)</td>
<td>29.38</td>
<td>48.60</td>
<td>50.16</td>
<td>40.74</td>
<td>NA</td>
</tr>
<tr>
<td>2045 CD efficiencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Wh/mi)</td>
<td>NA</td>
<td>NA</td>
<td>159.5</td>
<td>222.4</td>
<td>234.2</td>
</tr>
<tr>
<td>2045 veh. price over</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conventional</td>
<td>$0</td>
<td>$1,251</td>
<td>$1,912</td>
<td>$5,400</td>
<td>$5,229</td>
</tr>
</tbody>
</table>

Assuming midsize vehicles, Autonomie 2011 Prices converted to 2012 dollars. Price mark-ups do not include charger costs.

What factors influence PHEV adoption and electrified mileage in this population segment?

1. Battery costs (up-front vehicle price)
2. Vehicle ICE efficiency (cost per mile)
3. Public charging infrastructure (number of electrified miles and cost per mile)
Accomplishments: How do battery cost and ICE efficiency influence adoption?

- Decreasing battery cost lowers prices of BEVs & PHEVs; highest electric range vehicles gain market share especially in SF homes.

- Dramatically increasing ICE efficiency causes market share of alternatives other than conventional ICEs to decrease.

<table>
<thead>
<tr>
<th>% of 2050 sales</th>
<th>ICE</th>
<th>Hybrid</th>
<th>PHEV10</th>
<th>PHEV40</th>
<th>BEV</th>
<th>CNG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Family</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>base</td>
<td>15.7</td>
<td>26.0</td>
<td>27.3</td>
<td>8.4</td>
<td>6.7</td>
<td>16.0</td>
</tr>
<tr>
<td>½ cost battery</td>
<td>14.8</td>
<td>25.1</td>
<td>23.7</td>
<td>8.7</td>
<td>13.2</td>
<td>14.8</td>
</tr>
<tr>
<td>2x ICE eff.</td>
<td>30.7</td>
<td>26.0</td>
<td>23.8</td>
<td>4.3</td>
<td>3.2</td>
<td>12.0</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>base</td>
<td>17.2</td>
<td>30.3</td>
<td>28.7</td>
<td>7.8</td>
<td>0.0</td>
<td>16.0</td>
</tr>
<tr>
<td>½ cost battery</td>
<td>17.0</td>
<td>30.4</td>
<td>28.5</td>
<td>8.7</td>
<td>0.0</td>
<td>15.3</td>
</tr>
<tr>
<td>2x ICE eff.</td>
<td>29.9</td>
<td>26.7</td>
<td>26.1</td>
<td>8.1</td>
<td>0.0</td>
<td>8.8</td>
</tr>
</tbody>
</table>
Accomplishments: While increasing ICE efficiency decreases market share of alternative vehicles, GHG emissions decrease.
Accomplishments: Parameterizing ICE efficiency and battery cost shows their relative impact on PHEV and BEV sales

- **2050 BEV sales are less than 10% for all scenarios where conventional SI efficiency is better than 34 mpgge in 2050.**

- **PHEVs generally lose market share to ICEs & hybrids as ICE efficiencies increase.**

- **For very low ICE efficiencies, PHEVs lose market share to BEVs.**
Accomplishments: Availability of public charging can significantly influence PHEV adoption

- Access to 1 hour of public charging increases PHEV attractiveness
- Access to 1 ‘tank’ of fully electrified mileage provides additional impact but diminishing returns

<table>
<thead>
<tr>
<th>% of 2050 sales</th>
<th>ICE</th>
<th>Hybrid</th>
<th>PHEV10</th>
<th>PHEV40</th>
<th>BEV</th>
<th>CNG</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>base</td>
<td>15.7</td>
<td>26.0</td>
<td>27.3</td>
<td>8.4</td>
<td>6.7</td>
<td>16.0</td>
</tr>
<tr>
<td>1h public charging</td>
<td>14.7</td>
<td>25.0</td>
<td>32.5</td>
<td>8.6</td>
<td>6.1</td>
<td>14.0</td>
</tr>
<tr>
<td>full public charge</td>
<td>14.6</td>
<td>24.0</td>
<td>32.2</td>
<td>9.1</td>
<td>6.1</td>
<td>14.0</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>base</td>
<td>17.2</td>
<td>30.3</td>
<td>28.7</td>
<td>7.8</td>
<td>0.0</td>
<td>16.0</td>
</tr>
<tr>
<td>1h public charging</td>
<td>15.0</td>
<td>26.4</td>
<td>34.3</td>
<td>11.7</td>
<td>0.0</td>
<td>12.6</td>
</tr>
<tr>
<td>full public charge</td>
<td>15.0</td>
<td>26.2</td>
<td>32.5</td>
<td>13.9</td>
<td>0.0</td>
<td>12.4</td>
</tr>
</tbody>
</table>
Accomplishments: Public charging can potentially have a large impact on electric miles driven by residents of non-single family homes.

Mileage fraction

Base case vs 1h public charging

GHG emissions

Probing results across population segments can identify high impact markets.
Accomplishment: First workshop to actively probe synergies, competition, and new ways of developing H₂ & natural gas in tandem

- Market & manufacturer signals indicate hydrogen and natural gas will naturally segment
- Starting from common standards & equipment may enable synergistic development of both
- Co-location of fueling stations would create new business opportunities
- Roles of fuel providers and utilities will shift
- The near term may not grow up to look like the long term
- States have identified different mechanisms to incentivize transitions

Report published Feb 2015

Accomplishments: publications, presentations, award

Peer-reviewed Publications
- Barter GE, Tamor MA, Manley DK, West TH. The implications of modeling range and infrastructure barriers to battery electric vehicle adoption. Accepted for publication in Transportation Research Record (2015).
 - Recipient of the Transportation Research Board 2015 Barry McNutt Award

Technical Report

Presentations
Collaboration with other institutions

- Incorporation of real world driving cycles in collaboration with Ford
 - Barter GE, Tamor MA, Manley DK, West TH. The implications of modeling range and infrastructure barriers to battery electric vehicle adoption. Accepted for publication in Transportation Research Record (2015).
 - Recipient of the Transportation Research Board 2015 Barry McNutt Award
- Model input and review from ANL, ORNL, NREL, Energetics
- Technical critiques on modeling and analysis:
 - DOE
 - DOT
 - Ford Motor Company
 - General Electric
 - American Gas Association
- Workshop Organizing Committee
 - Toyota
 - American Gas Association
 - DOE
Remaining challenges and future work

- **Challenge: Availability of alternative fuel and charging infrastructure**
 - FW: Conduct deeper tradeoff analyses that explore refueling infrastructure availability

- **Challenge: Availability of AFVs and electric drive vehicles**

- **Challenge: Uncertainty in vehicle choice models and projections**
 - FW: Characterize factors that lead to different projections
 - FW: Compare results with other models in VTO analysis portfolio

- **Challenge: Identification of largest leverage points for reducing petroleum consumption and greenhouse gas emissions**
 - FW: Conduct parametric analyses that more deeply explore fuel infrastructure availability, vehicle model availability, impact of lower cost or higher performance technological advances

- **Challenge: Role of alternative fuels, technologies, and infrastructure on heavy duty vehicle emissions and petroleum consumption**
 - FW: Expand parametric modeling & analyses to consider heavy duty vehicles
Summary

- **Relevance**: Identify opportunities, challenges, and tradeoffs at the intersection of multiple alternative fuels & technologies
- **Approach**: Stakeholder engagement workshops provide context for key questions & issues to focus analyses. Parametric analyses address uncertainty space associated with vehicle adoption and impact, and reveal conditions that must be true to reach performance goals.
- **Accomplishments**:
 - Identified factors that influence alternative technology adoption and fuel use by segmenting model by vehicle type and driver demographics. Analyses focused on how dwelling type, ICE efficiency, battery cost, and charging infrastructure influenced PHEV and BEV adoption and electrified miles.
 - **Collaborations**: Diverse perspectives provided by stakeholder engagement workshop. Partnered with Ford to characterize real world driving cycle patterns on adoption.
 - **Future work**: Identification of largest leverage points for reducing petroleum use and greenhouse gas emissions. More deeply explore fuel infrastructure availability, vehicle model availability, impact of lower cost or higher performance technological advances. Consider heavy duty.
TECHNICAL BACK-UP SLIDES
Modeling Approach: The model has many segments to capture the different niches of LDV consumers

Vehicle Stock Segmentation

- **Powertrain**
 - SI
 - SI Hybrid
 - SI PHEV10
 - SI PHEV40
 - CI
 - CI Hybrid
 - CI PHEV10
 - CI PHEV40
 - E85 FFV
 - E85 FFV Hybrid
 - E85 FFV PHEV10
 - E85 FFV PHEV40
 - BEV75
 - BEV100
 - BEV150
 - BEV225
 - CNG
 - CNG Hybrid
 - CNG Bi-fuel

- **Housing type**
 - Single family home without NG
 - Single family home with NG
 - No access to home charging/fueling

VMT Segmentation

- **State**
 - 48 CONUS + Washington, DC

- **Density**
 - Urban
 - Suburban
 - Rural

- **Age**
 - 0-46 years

- **Driver Intensity**
 - High
 - Medium
 - Low

Geography

- **Vehicle**
 - Powertrain
 - E85 FFV
 - E85 FFV Hybrid
 - E85 FFV PHEV10
 - E85 FFV PHEV40
 - BEV75
 - BEV100
 - BEV150
 - BEV225
 - CNG
 - CNG Hybrid
 - CNG Bi-fuel

- **Demographics**
 - Size
 - Compact
 - Midsize
 - Small SUV
 - Large SUV
 - Pickup

- **Energy Sources**
 - Petroleum
 - Natural Gas
 - Coal
 - Biomass
 - Solar/Wind

- **Fuels**
 - Gasoline
 - Diesel
 - Biodiesel
 - Ethanol
 - Electricity
 - CNG
Modeling Approach: Energy supplies, fuels, and vehicle mixes vary by state

State-level Variations

- Vehicles
 - Numbers, sizes, drive-train mixes
- Driver demographics
 - VMT intensity, urban-suburban-rural divisions, single-family vs. other home rates
- Fuels
 - Costs, electricity mix, taxes & fees, alternative fuel infrastructure
- Energy supply curves (as appropriate)
 - Biomass, natural gas
- Policy
 - Consumer subsidies and incentives
Modeling Approach: Model inputs are taken from published sources when possible, and many are parameterized

Energy sources
- Oil: Global price EIA Annual Energy Outlook (2014)
- Coal: National price EIA AEO (2014)
- NG: Regional price EIA AEO (2014)
 - Differential prices for industrial, power, & residential
- Biomass: State supply curves ORNL’s Billion Ton Study
 - Price corrected to match current feedstock markets

Fuel conversion and distribution
- Conversion costs and GHG emissions derived from ANL GREET model
- RFS grain mandate is satisfied first, then cellulosic (but not enforced)
 - Gasohol blendstock allowed to rise from E10 to E15
- Ethanol can be transported from one region to another for cost or supply balance
- Electricity grid
 - State-based electricity mix, allowed to evolve according to population growth and energy costs
 - Intermittent and “always-on” sources assumed to supply base load first
 - Vehicles assumed to be supplied by marginal mix
Modeling Approach: Model inputs are taken from published sources when possible, but many are parameterized

Vehicle model
- Consumers do not change vehicle class (size)
- VMT varies by model segmentation, but does not change over time
- LDV stock growth rate is the same as population growth rate (per capita vehicles is constant)
- Consumers have baseline 3 year required payback period with no discounting
- Vehicle efficiency, cost, and battery capacity taken from ANL Autonomie 2011 model analysis
- CAFE requirements are satisfied
- Consumer choice model is nested, multinomial logit type (like MA3T)
 - Sale shares depend on amortized consumer utility cost = vehicle purchase price – subsidies + fuel operating costs + penalties (range and fuel availability)
 - Bi-fuel vehicles (E85 FFVs and CNG bi-fuel vehicle) dynamically choose fuel use rate breakdown using:
 (Probability of visiting a station with CNG) * (Willing-to-pay price premium)

Changes as new pumps are added in response to vehicle sales

Responds to market conditions (price sensitivity is parameterized)
Modeling Approach: The vehicle sub-model is focused on tracking LDV stock evolution and capturing the elements of consumer choice.

- **Fuel Prices**
 - Captures FFV fuel choice
 - Adds alternative fuel stations as park grows
- **Vehicle cost**
 - Repeated for every region, driver type, etc.
 - Includes range and infrastructure penalties
 - Manufacturing and technology costs decrease as more units are produced
- **Home refueling cost**
 - Includes capital and O&M costs
- **Incentives**
 - (state+national)
 - Includes range and infrastructure penalties
- **Capital costs**
- **Choice penalties**
- **Logit choice function**
- **Model availability filtering**
- **Vehicle sale rates**
- **Fuel choice model**
- **Refueling station growth**
- **Stock mileage**
- **Stock efficiency**
- **LDV stock**
- **Population growth**
- **Vehicle scrap rates**
- **To: Energy Carrier**

From: Energy Carrier

- **Payback period**

The diagram illustrates the flow of information from energy carriers to various components of the vehicle sub-model, including fuel prices, vehicle cost, home refueling cost, incentives, capital costs, and choice penalties. Each of these components is interlinked to represent the complex dynamics of vehicle choice and stock evolution.
Modeling Approach/Validation: Compared results with historical data to validate model logic and sensitivity to input assumptions.

- Large fraction of PHEV and BEV sales can be attributed to incentives.
- Number of PHEV models available jumped from 4 to 8 in 2014, but all new models were luxury vehicles above $70k MSRP – inaccessible to the majority of consumers.
Accomplishments: 2050 sales broken down by driver demographics – Driving intensity

Light drivers have the highest fraction of BEVs.

Heavy drivers have the highest fraction of CNGs.

Heavy drivers have a greater fraction of PHEVs and hybrids than lighter drivers. They also tend towards longer range BEVs.
Accomplishments: Parametric analysis illustrates impact of dwelling type on PHEV10 vs. PHEV40 sales

- SF – Sales of PHEVs and BEVs are strongly influenced by ICE efficiency. BEVs and PHEV40s are viable alternatives at low efficiencies.
- Non-SF – When ICE efficiency decreases, BEVs and PHEV40s are not viable alternatives. Hybrids become more prevalent when ICE efficiency is very low.