

New York Microgrid Initiatives

DOE Electricity Advisory Committee

Jim Gallagher Executive Director

New York State Smart Grid Consortium
June 30, 2015

Consortium Overview

Consortium Mission

Ongoing advocacy of Smart Grid / grid modernization

- Maintain vision of future grid
- Advocate benefits for producers, suppliers, and consumers
- Support initiatives that demonstrate capabilities of advanced grid technologies
- Provide technical resources for industry and policy makers
- Priorities for 2015
 - Real world projects - Multiple microgrid demonstrations
 - Strengthen research and international collaboration
 - Utility of the Future (REV)

NY Microgrid Inventory and Case Studies

Objectives

- Increase understanding of community microgrids
- Support future policy making and advocacy based on the analysis and recommendations
- Provide insight for critical stakeholders in evolving markets in New York and nationwide:
 - Aligns with NY Prize and REV initiatives

Microgrids Inventory Report

Scope

- Provides factual information on existing NY Microgrids
- 20 microgrid projects selected from an extensive candidate list of NY located microgrid projects
- Projects down-selected using Consortium-supplied selection criteria.
 - e.g. Eliminated nano-grids

Microgrids Inventory Report (cont'd)

No.	Project Name and Location	Project Status	Total Capacity (MW)	Generation Types
1	Eastman Business Park Microgrid Rochester, New York	Online	125	Coal
2	SUNY Stony Brook Stony Brook, New York	Online	45	Natural gas (NG) combined heat and power (CHP)
3	Co-op City Bronx, New York	Online	40.8	NG and steam
4	Cornell University CHP Microgrid Ithaca, New York	Online	37.9	NG, diesel, steam, hydro
5	NYU Microgrid New York, New York	Online	13.4	Diesel and steam
6	Burrstone Energy Center Utica, New York	Online	3.6	NG co-gen
7	Van Blarcom Closures, Inc. Brooklyn, New York	Online	1.2	NG CHP
8	Town of Denning Denning, New York	Online	1	Diesel
9	Linden Plaza Brooklyn, New York	Online	0.5	NG CHP
10	Jewish Home & Hospital Bronx, New York	Online	0.3	NG CHP

Microgrids Inventory Report (cont'd)

No.	Project Name and Location	Project Status	Total Capacity (MW)	Generation Types
140.	-	i iojot otatao	rotal outputity (mirr)	Contractin Types
11	Silver Towers New York, New York	Online	0.3	NG CHP
12	Hudson Yards New York, New York	Under development	14.5	NG and diesel
13	Kings Plaza Shopping Mall Brooklyn, New York	Under development	12.8	NG CHP
14	Clarkson University-Potsdam Potsdam, New York	Under development	10	NG, solar photovoltaics (PV), hydro, diesel
15	Nassau County Seaford, New York	Proposed	15.1	Diesel, methane
16	Suffolk County Yaphank, New York	Proposed	12.1	Diesel and PV
17	Metropolitan Hospital New York, New York	Proposed	6.15	Diesel
18	Rockland County New City, New York	Proposed	3.25	NG, diesel
19	Broome County Binghamton, New York	Proposed	2.47	Diesel
20	Buffalo Niagara Medical Campus Buffalo, New York	Proposed	unknown	NG CHP, PV

Microgrids Case Studies Report

Scope

- Provides in-depth analysis of a few projects of interest
- Assess trends, success and failure factors, as well as provide practical action recommendations.
- Six community microgrid programs from across the U.S. and Europe.
 - Five existing microgrids were selected for detailed analysis, and one as a developmental highlight.
- Emphasis on community engagement, interesting business models

Project	Location	Ownership	Customers	Generation	
Borrego Springs	San Diego, CA	Utility-owned	Mixed use; 2,800 customers	15 MW peak load. Diesel, PV, storage	
Stafford Hill	Rutland, VT	Utility-owned	High school shelter	2.5 MW PV, 4 MW storage	
Co-op City	New York, NY	End user owned	50,000 residents	40 MW capacity. Gas, steam	
Hamden	Hamden, CT	Third party- owned	Mixed use across seven buildings	1.7 MW. CHP, diesel, fuel cell, PV, storage	
Bornholm Island	Denmark	Hybrid ownership	~28,000 customers including res/com/ind loads	>100 MW. Diesel, wind, CHP, steam, PV, biogas	
Hudson Yards	New York, NY	Third party- owned	Mixed use	38 MW demand 14.5 MW CHP	

Metric	Co-op City	Hamden	Stafford Hill	Bornholm Island	Borrego Springs
Diversity of residential and commercial	X	X	X	X	X
Collection of companies financing and providing tools	Х	X	Х	Х	Х
Major incorporation of EE,DR, and load optimization		X		X	X
Diversity of DER		X		Χ	X
Utility/community involvement in management and operation	X		X	X	X

Analysis of the success and failures of each project based on 16 different elements.

- Ownership
- Cost
- Finance
- Regulation
- Development
- Technology
- Interconnection
- Operations

- Energy Delivery
- Vendor Relationships
- Community Relationships
- Benefits
- Revenue
- Business Model
- Customer Impact
- Energy Efficiency

Principal Lessons Learned

- Asset ownership has a significant impact on business model viability and the ability to monetize benefits.
- Diversification of monetization strategies can enhance access to capital, mitigate financial risk, and optimize value.
- Optimal system design may require greater complexity and more robust control, experienced operation is key to optimizing community microgrid value.
- Focusing on key stakeholders while maximizing the effectiveness of engagement with those stakeholders, early in the process, is key to community microgrid project success.

Recommendations

Business Model Optimization

- Reduce Legal and Regulatory Barriers to Development.
- Enable and Encourage Comprehensive Benefit Monetization.
- Enable and Align Full Cost Recovery to Cost Causation and Benefit Receipt.

Project development

- Enable and Encourage Optimal Project Development and Finance.
- Encourage Early and Robust Stakeholder Engagement.
- Standardize Key Processes, Requirements, Technologies and Agreements.
- Support Best Practices for Optimizing Project Technology, Design and Operation.

New York Prize

The \$40 million NY Prize community microgrid competition (RFP 3044)

- Stage 1 Feasibility Assessment (CLOSED)
 - Awards to Conduct Feasibility Assessments
 - ~80 awards for studies (up to \$100K)
- Stage 2 Engineering Design and Financial /Business Plan
 - Feasibility Evaluated Awards for Audit Grade Design
 - 4-8 Awards (up to \$1M)
- Stage 3 Microgrid Build-out and Operation
 - Designs Evaluated Awards for Build-out/ Operation
 - ~5 Awards of \$3-\$5M
- Open enrollment structure to accelerate pipeline of projects
- Can enter without having been awarded for previous stage

Source: NYSERDA

New York Prize (cont'd)

Desired Features of Community Microgrids

Provide power to critical facilities and a diverse group of customers

- Move beyond campus style projects
- Community actively engaged in planning and operation
- Demonstrate tangible community benefits
- Not dependent on utility command and control

Incorporate innovations that strengthen the surrounding power grid

- Employ active network control
- Provide platform for active customer interaction with grid
- Incorporate clean energy, energy efficiency, storage

High potential to be economic and replicated without future subsidies

Leverage private capital to maximum extent

Contact Information

New York State Smart Grid Consortium 387 Park Avenue South 3rd Floor New York, NY 10016

James T. Gallagher, Executive Director

jgallagher@nyssmartgrid.com

NYSSmartGrid.com