Continuum-scale modeling of hydrogen and helium bubble growth in metals

R. Kolasinski(a), M. Shimada(b), D. Cowgill(a), D. Buchenauer(a), and D. Donovan(c)

(a)Sandia National Laboratories, Hydrogen & Metallurgy Science Dept., Livermore, CA
(b)Idaho National Laboratory, Fusion Safety Program, Idaho Falls, ID
(c)University of Tennessee, Dept. Of Nuclear Engineering, Knoxville, TN

Y. Oya(d), T. Chikada(d), and K. Michibayashi(f)

(d)Shizuoka University, Department of Chemistry, Shizuoka, Japan
(f)Shizuoka University, Department of Geosciences, Shizuoka, Japan

Tritium Focus Group Meeting
September 24, 2014
Motivation: Analysis of bubble growth in ITER-grade W samples exposed in TPE

- Precipitation affects migration through material
- Bubble growth depends on microstructure
- Growth mechanisms critical to developing realistic models

<table>
<thead>
<tr>
<th>exposure type</th>
<th>ion energy [eV]</th>
<th>duration [min]</th>
<th>flux (Γ_i) [$m^2 s^{-1}$]</th>
<th>fluence (Φ) [m^{-2}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td>100</td>
<td>60</td>
<td>4.9×10^{21}</td>
<td>1.8×10^{25}</td>
</tr>
<tr>
<td>HF</td>
<td>100</td>
<td>120</td>
<td>1.5×10^{22}</td>
<td>1.1×10^{26}</td>
</tr>
</tbody>
</table>

- TPE plasma exposures at INL
- Microscopy at Shizuoka
Retention measurements correspond closely with those obtained in other laboratories.

Previous work by Alimov et al:
- ITER-grade W
- \(E = 38 \text{ eV} \)
- \(\Phi = 10^{22} \text{ D m}^{-2} \text{ s}^{-1} \)

Comparable exposure conditions

Retention measurements correspond closely with those obtained in other laboratories.

Previous work by Alimov et al:
- ITER-grade W
- $E = 38 \text{ eV}$
- $\Phi = 10^{22} \text{ D m}^{-2} \text{ s}^{-1}$

Comparable exposure conditions:

TPE retention measurements:
- Correspond closely with Toyama/IPP meas.
- Confirm accepted retention temp. dependence.

Surface morphology variation with temperature

Key features:
- Non-uniform coverage
- Bubbles are small (<10 μm dia.) compared with warm-rolled W material.
- Absent at temperature extrema.
EBSD measurements reveal dependence on grain orientation

- Grain orientation indicated by inverse pole plot.
- Bubbles visible on grains with <111> and <110> directions aligned normal to surface
- Considerable distortion within individual grains
- Un-annealed sample showed increased distortion

SEM image of the same area
Atomic force microscopy reveals details of surface structure

- Atomic force microscopy provides information on the shape of the deformed surface.
- Individual bubbles identified and analyzed automatically.

corresponding bubble size distributions

![Graph showing bubble size distributions at 131 °C and 231 °C.](image)
What bubble growth mechanisms are active in W during plasma exposure?

- Near-surface plastic deformation
- Dislocation loop punching
- Vacancy clustering

Sandia National Laboratories
Far from the free surface, dislocation loop punching is favored

Three bulk precipitate growth mechanisms considered:

- Dislocation loop punching
 \[p_{LP} \geq \frac{2\gamma}{r} + \frac{\mu b}{r} \sim \frac{1}{r} \]

- Griffith nano-crack extension
 \[p_{NC} \geq \sqrt{\frac{\pi \mu \gamma}{(1 - \vartheta)r}} \sim \frac{1}{\sqrt{r}} \]

- Dislocation dipole expansion
 \[p_{DE} \geq \frac{2\gamma}{s} + \frac{\mu d}{2r} \sim \frac{1}{r} + c \]

Based on methods developed in:
Near the free surface, bubbles may grow by crack extension.

Crack extension competitive with loop punching near surface:

\[
p_B \geq \frac{1}{r} \left(\frac{4\gamma(Eh)^{1/3}}{5C_1C_2} \right)^{3/4} \sim \frac{1}{r}
\]

Limitations:
- Correction for thick blisters
- Effect of plasticity (blunting of crack tip)
- Hydrogen effects

Bubble volumes measured with AFM correlate well with blister model

Volume modeled using blister test for thin film adhesion:

\[V = \int y(r)2\pi rdr = C_1\pi a^2 y_c \]

Bubble volumes measured with AFM correlate well with deflection model

\[V = \int y(r)2\pi rdr = C_1\pi a^2 y_c \]

Diffusion and trapping modeled with a continuum-scale approach

Diffusion: 1-D, uniform temperature:

\[
\frac{\partial u(x, t)}{\partial t} = D(t) \frac{\partial^2 u(x, t)}{\partial x^2} - q_T(x, t) - q_B(x, t)
\]

Point defects:
- 1.4 eV saturable traps, no nucleation.

Bubbles:
Modeled using a approach of Mills [J. Appl. Phys. (1959)].

\[
q_B(x, t) = \frac{\partial u_B(x, t)}{\partial t} = 4\pi D(t)r_B(x, t)N_B(x)[u(x, t) - u_{eq}(x, t)]
\]

Enthalpies for H migrating through W.

Dissolution of H in W is highly endothermic.
H equation of state takes into account non-ideal gas effects

H₂ equation of state (EOS):

- P > 1 GPa expected within small bubbles.
- At 300 K, H₂ solidifies at p=5.7 GPa.
- Tkacz’s [J. Alloys & Compounds (2002)] EOS to provide the best fit:
 \[v = Ap^{-1/3} + Bp^{-2/3} + Cp^{-4/3} + (D + ET)p^{-1} \]
- San Marchi’s simplified EOS better at low pressure:
 \[v = \frac{RT}{p} + b \]
When is bubble growth favorable?

Calculation of equilibrium press.

When is precipitate in equilibrium with mobile conc.?

- Equate chemical potentials of gas and solution phase.
- Calculate fugacity to account for non-ideal behavior:
 \[
 \ln(f/p) = \int_0^p \left(\frac{v(p,T)}{RT} - \frac{1}{p} \right) dp
 \]
- Equilibrium conc. given by:
 \[
 u_{eq} = \sqrt{f} S_0 \exp(-H_s/RT)
 \]

S₀ and Hₘ from Frauenfelder [JVST, 1969].
Summary of surface morphology findings

• ITER-grade W sample exposed in TPE show similar retention to Toyama/IPP studies.

• Analysis of surface morphology:
 – XPS shows implanted C reduced considerably
 – SEM/EBSD illustrate non-uniform bubble growth over surface
 – Bubble grow on (110) and (111) crystal planes
 – AFM analysis provide bubble volumes

• Modeling of bubbles:
 – Thin film adhesion model adapted to model blister grown on tungsten.
 – Model reproduces bubble sizes observed with AFM
We would like to express our appreciation to:

• Our collaborators at INL and Sandia/CA:
 – Brad Merrill, Robert Pawelko, Lee Cadwallader
 – Richard Nygren, Josh Whaley, Jon Watkins, Thomas Felter