Topics

• Project Objective
• Study / Analysis Steps
• Major Technical Accomplishments
• Deliverables and schedule for activities to be completed under FY15 funding
• Risk factors affecting timely completion of planned activities as well as movement through RD&D cycle
• Early thoughts on follow-on work that should be considered for funding in FY16
Project Objective

• Conduct wide area angle pair analysis using Phasor Measurement System data from four ISOs
 • December 15, 2013 to February 14, 2015
 • September 1, 2014 to October 31, 2015
• Identify Phase Angle Pairs – Based on Data and Inputs from ISOs
 • Selected 22 inter-ISO angle pairs
• Investigate correlation between LMP and high stress system conditions
• Evaluate changes in angle differences to identify significant system events (December 1, 2014 to December 7, 2014)
Study / Analysis Steps

• **Data Collection**
 • Define Time period for data extraction / collection from ISOs
 • Obtain data from ISOs for 12/15/2013 to 2/15/2014, 9/01/2014 to 10/31/2014 and 12/01/2014 to 12/07/2014

• **Data Checking - evaluate data quality and other attributes**
 – Data Availability and data quality
 – Time synchronization and offset correction
 – Time stamp alignment
 – Data formats

• **Data Aggregation and synchronizing checks for Wide Area Analysis**
 – Combine data from different ISOs
 • Data conversion to a common format and Time alignment
 – Data extraction for selected/alternate angle pairs

• **Perform Statistical Analysis**
 – Box – Whisker and Time Duration Analysis
 – Correlation with Power Flow and Bus Voltage
 – Establish Typical Ranges for Selected Angle Pairs
 – Significant event analysis
Major Technical Accomplishments

• Analysis completed for twenty two wide area angle pairs using 2013-2014 phasor system data
• Angle pair selection based on the input from ISOS/TAG
 – Selected twenty two Angle pairs
 – Data required from fifteen substations to analyze the above 22 angle pairs
• Problems in analyzing wide area angle pairs using PMU data
 – Poor data quality – data quality needs improvement
 – Data synchronization
 – Offset errors – required adjustments to some PMU data
• Draft Report for winter (December 15, 2013-February 15, 2014-and fall (September 1,2014 to October 31, 2014) completed and submitted
 – Analysis of twenty-two wide Internal angle pairs
 – Wide Area Angle pair analysis and its correlation with LMP
• Phasor System data can provide good results and information for Wide area angle pairs across ISOS. Using phasor system data, ISOS can monitor
 – System stress conditions
 – Pre-cursors and high stress locations and event identification
 – Data checking and analysis
Wide Area Angle Pairs Covering Four ISOs
22 Angle Pairs and 15 Buses
Results of Comparison for Different Time Periods - High\(^1\) and Low\(^1\) Values

<table>
<thead>
<tr>
<th>Index</th>
<th>From bus</th>
<th>To bus</th>
<th>SE Data March 2011</th>
<th>PMU Data (1) 12/15/2013-2/15/2014</th>
<th>PMU Data (2) 9/1/2014-10/31/2014</th>
<th>PMU Data (3) 12/1/2014-12/7/2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>1</td>
<td>Raun 345kV (Lehigh(^*))</td>
<td>Sub 91 345kV</td>
<td>-13</td>
<td>48</td>
<td>-30</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>Goodings 345kV</td>
<td>Arcadion 345kV</td>
<td>-8</td>
<td>14</td>
<td>-14</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>Goodings 345kV</td>
<td>Palisades 345kV</td>
<td>7</td>
<td>29</td>
<td>-6</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>Labadie 345kV (Montgomery(^\wedge))</td>
<td>Hanna 345kV</td>
<td>23</td>
<td>57</td>
<td>12</td>
<td>63</td>
</tr>
<tr>
<td>5</td>
<td>Labadie 345kV (Montgomery(^\wedge))</td>
<td>Cumberland 500kV (Ammojopa(^^))</td>
<td>9</td>
<td>35</td>
<td>-11</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>Jacksons Ferry 765kV (Broadford(^\wedge))</td>
<td>Cumberland 500kV (Ammojopa(^^))</td>
<td>-47</td>
<td>-19</td>
<td>-54</td>
<td>-47</td>
</tr>
<tr>
<td>7</td>
<td>Canton Centr. 345kV</td>
<td>Monroe 345kV (Decoplacid(^\wedge))</td>
<td>-10</td>
<td>12</td>
<td>-34</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>Alburtis 500kV</td>
<td>Canton Centr. 345kV</td>
<td>-46</td>
<td>-10</td>
<td>-61</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>Alburtis 500kV</td>
<td>Jacksons Ferry 765kV (Broadford(^\wedge))</td>
<td>-60</td>
<td>-12</td>
<td>-76</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>Alburtis 500kV</td>
<td>Ramapo 500kV (Buchanan(^*))</td>
<td>2</td>
<td>18</td>
<td>-3</td>
<td>49</td>
</tr>
<tr>
<td>11</td>
<td>Niagara 345kV</td>
<td>Monroe 345kV (Decoplacid(^\wedge))</td>
<td>-26</td>
<td>12</td>
<td>-49</td>
<td>50</td>
</tr>
<tr>
<td>12</td>
<td>Niagara 345kV</td>
<td>Ramapo 500kV (Buchanan(^*))</td>
<td>9</td>
<td>57</td>
<td>22</td>
<td>88</td>
</tr>
<tr>
<td>13</td>
<td>Ramapo 500kV (Buchanan(^*))</td>
<td>Millbury 345kV</td>
<td>-26</td>
<td>17</td>
<td>-36</td>
<td>24</td>
</tr>
<tr>
<td>14</td>
<td>Raun 345kV (Lehigh(^*))</td>
<td>Ramapo 500kV (Buchanan(^*))</td>
<td>66</td>
<td>154</td>
<td>19</td>
<td>208</td>
</tr>
<tr>
<td>15</td>
<td>Arcadian 345kV</td>
<td>Ramapo 500kV (Buchanan(^*))</td>
<td>39</td>
<td>109</td>
<td>19</td>
<td>159</td>
</tr>
<tr>
<td>16</td>
<td>Goodings 345kV</td>
<td>Monroe 345kV (Decoplacid(^\wedge))</td>
<td>22</td>
<td>54</td>
<td>-6</td>
<td>51</td>
</tr>
<tr>
<td>17</td>
<td>Goodings 345kV</td>
<td>Hanna 345kV</td>
<td>0</td>
<td>23</td>
<td>-21</td>
<td>27</td>
</tr>
<tr>
<td>18</td>
<td>Hanna 345kV</td>
<td>Monroe 345kV (Decoplacid(^\wedge))</td>
<td>11</td>
<td>46</td>
<td>-18</td>
<td>46</td>
</tr>
<tr>
<td>19</td>
<td>Hanna 345kV</td>
<td>Canton Centr. 345kV</td>
<td>13</td>
<td>42</td>
<td>-5</td>
<td>48</td>
</tr>
<tr>
<td>20</td>
<td>Palisades 345kV</td>
<td>Monroe 345kV (Decoplacid(^\wedge))</td>
<td>8</td>
<td>29</td>
<td>-3</td>
<td>27</td>
</tr>
<tr>
<td>21</td>
<td>Raun 345kV (Lehigh(^*))</td>
<td>Millbury 345kV</td>
<td>26</td>
<td>117</td>
<td>8</td>
<td>213</td>
</tr>
<tr>
<td>22</td>
<td>Arcadian 345kV</td>
<td>Millbury 345kV</td>
<td>51</td>
<td>159</td>
<td>2</td>
<td>165</td>
</tr>
</tbody>
</table>

\(^1\) High and Low values are determined after eliminating top and bottom 0.5% of data to account for outliers
\(^\wedge\) Alternative data sources used due to poor data availability for some primary signals
Methodology to Identify Significant Events

- Control Chart analysis technique used to identify significant events
 - Method is commonly used in manufacturing to find samples outside the tolerance band
 - Three step method – find max and min values in one minute time window; calculate range; compare with range control value
 - Used angle pair angle difference values for selected angle pairs
 - Typical tolerance band for normal distributions is +/- 3 sigma (99.76 percent). For extreme events used high sigma values
 - Use of 20 sigma identified 2 extreme events; use of 15 sigma identified 3 major events – same as actual number of events

- Methodology can be used to extract significant events from large amount of data
12/03 1:22 NERC EI: MISO Callaway 1 Trip 1287MW Loss

12/04 10:58 NERC EI: Massena-Marcy 765kV Trip

12/04 15:05 NERC Quebec: LG2C generation trip with 1019 MW loss. Protective devices tripped on two 735-kV transmission lines carrying power from Baie James to southern Québec
Detected Events Summary (nSigma=20)
Dec 1 to Dec 7, 2014: 14 events identified

<table>
<thead>
<tr>
<th>Events</th>
<th>UCL</th>
<th>12/1</th>
<th>12/2</th>
<th>12/3</th>
<th>12/4</th>
<th>12/5</th>
<th>12/6</th>
<th>12/7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCL</td>
<td>15:44</td>
<td>5:06</td>
<td>3:56</td>
<td>4:55</td>
<td>2:01</td>
<td>5:45</td>
<td>6:03</td>
</tr>
<tr>
<td>Ramapo*</td>
<td>Millbury</td>
<td>2.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramapo*</td>
<td>Sandy Pond</td>
<td>3.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Phase angle regulator on Ramapo

MISO Event

NYISO Event

ISONE: System impact was small and no equipment tripping messages

PJM: went off-cost for reactive transfers at 12/07/2014 15:34
Deliverables and Schedules

• Analysis of ISO-internal angle pairs using SE data - Completed
• Report summarizing analysis process and analysis results using Phasor system data - Completed
• Periodic TAG meetings to report and discuss results (Three in-person meetings during FY15)
• Analysis of wide area angle pairs for event detection and as pre-cursors of significant events using one week (December 1-7, 2014) data – in progress
 – Data received and analyzed
 – Report presented and discussed with ISOs/TAG members
• Complete Report of Analysis – June 30, 2015
Risk Factors Affecting Timely Completion

- Data quality and data availability
 - Data quality needs improvement for some selected locations
 - Data availability for selected angle pairs from ISOs

- Data Synchronization
 - PMU data is well synchronized unlike State Estimator system data
 - Some phase angle adjustments are required – offset errors

- Additional Data
 - Power flow data and some voltage measurements will help in identification and analysis of pre-cursors
Summary and Next Steps

Summary:
• Received and collected Dec 1-7, 2014 phasor data from four ISOs;
• Extracted Dec 1-7, 2014 phasor data, cleaned and combined data for four ISOs;
 ▪ Angle change range can be used to identify system event;
 ▪ Angle difference value is related to system stress level;
• Angle pairs close to the event location can detect the event. Angle pairs that are far away from the event location can’t detect the event.

Next Steps:
• Prepare technical report
• Conduct Research to Identify event precursors that could lead to early warning and a new approach to alarming and system monitoring to allow operators time to react
 • Currently, alarms are based on thresholds.
 • Investigate whether for dynamic metrics
 – Phase angles
 – Oscillations
 – Sensitivities
 • Trend, duration and rate of change can be used to identify vulnerability to events
Thank You.

Any questions?

Bharat Bhargava
Electric Power Group
bhargava@electricpowergroup.com