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Overview

 Develop, test, and refine algorithms to automatically estimate
and quantify oscillations from PMUs in real time.
* Application
— Real-Time Situational Awareness based upon actual system observations
e Participants:
— Dan Trudnowski, Montana Tech

— John Pierre, University of Wyoming
— Lots of graduate students

Collaborations (Past year)
— PNNL (Jim Follum)
— BPA (Nick Leitschuh, Dmitry Kosterev)
— PEAK/WECC
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System Model
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Screen Capture of BPA’s Mode Meter

Tracks SYSTEM Modes
Assumes Ambient and/or Transient condition

FO biases results

SYNCHROPHASOR: MODE METER SUMMARY 02/18/2014 05:45:04 PM

& -CUSTER I DAMPING TRENDS

| s:Damping 6.43 CHIEF
5 JOSEPH
Frequency 0.81 : &

I BC/NW SHAPE F Py %zDamping
- Frequency

L]

SHULTZ
COLSTRIP

L]

GARRISON

55D, i GOOoD
s 11.60

Frequency 0.23 Lo = ;
T ¥ L 0.82

sDamping GOOoD }5 S P‘W--.ia%?nt
R
Freguency 0.39

eDamping GOOD

Frequency 0.23

80.00 minutes 2M8/2014 5:45.:04 PM




Screen Capture of BPA’s Oscillation Detector

Alarms based upon oscillation energy
Cannot distinguish between a Transient and FO

2/20/2014 9:18:23 AM
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Project Objectives/Accomplishments

Understand the fundamental nature and impact of FOs
— FO harmonics, FO Shape, “Sinusoid” Noise in an undamped Transient
— Most interesting (and difficult) case: FOs at system mode
e Develop Mode Meter algorithms that work in the presence of FOs
— Several algorithms developed. Results presented at the 2014 review.
— Methods require knowledge of the FO
— WECC case: Sep 2014
e Develop Oscillation Detection Approaches

— Goals:
e Automated (no tuning, operations) — We're pretty good at this with Energy Methods

e Determine if an oscillation is natural or forced - Very difficult
e |dentify the root cause (location) of a FO — Energy and shape typically point to the source

e Modal Analysis Software Development (BPA, PEAK, EPG)
— Oscillation Detector and Mode Meter used at the BPA control center for alarming
— Working with BPA to refine and define alarming — Setting alarm thresholds
— Support PEAK/WECC in the implementation of MAS

BPA/WECC Probing Tests Support

— Help design tests, analyze data C E RTS
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Forced Oscillations (FOs)

* Many causes, e.g.:
— Generator rogue controller in limit cycle

— Pulsing loads
— NOT A SYSTEM INSTABILITY

e FOs very common
— Periodically detected in the BPA OD System

e Can be very severe: Nov. 2005, Feb. 2010, Feb. 2014

e Often bias Mode Meter algorithms (Sep

. 2014)




FO Theory
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FO Theory
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FO Theory
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FO Theory
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FO Theory — The “Shape”

N
z Ui V; b1
4 ]ma)o

e FOshapeisunique

e FO shape can be calculated from PMU measurements
(amplitude and phase). — Spectral, filters, etc.

e |If FO frequency is NOT at a system mode, FO shape
typically points to the FO source (amplitude and phase).
— Based upon simulations and real-world experiences.
— Bases for current Oscillation Detection approaches.
— System freq may be the best “locating” signal

FO shape converges to SYSTEM MODE SHAPE if FO is at
the mode freq. MOST DIFFICULT AND INTERESTING CASE.

° CoNSORTIUM FOR ELECTRIC RELIABILITY TECHNOLOGY SowTons




FO at a System Mode
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Transient vs Forced
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Transient vs Forced
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Transient vs Forced
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Source Locating using System Freq

An Oscillation Detection Example
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Publications (Past year)

e G.PaiandJ.W. Pierre, “A Real-time Scheme for Validation of an Auto-regressive Time Series Model
for Power System Ambient Inter-area Mode Estimation,” Proceedings of HICSS-47, Waikoloa,
Hawaii, January 2014.

e J. Follum, Electromechanical Mode Estimation in the Presence of Forced Oscillations, Ph.D.
Dissertation, Department of Electrical and Computer Engineering, University of Wyoming, June,
2014.

e ). Follum and J.Pierre, “Time-Localization of Forced Oscillations in Power Systems,” Proceedings of
the IEEE Power & Energy Society General Meeting, July 2015. (accepted).

. R. Xie, D. Trudnowski, and I. West, “Shape Properties of Forced Oscillations,” Presented at NASPI,
March 2015.

* R.Xie and D. Trudnowski, “Distinguishing Features of Natural and Forced Oscillations,” Proceedings
of the IEEE Power & Energy Society General Meeting, July 2015 (accepted).

. M. Donnelly, D. Trudnowski, J. Colwell, J. Pierre, and L. Dosiek, “RMS-Energy Filter Design for Real-
Time Oscillation Detection,” Proceedings of the IEEE Power & Energy Society General Meeting, July
2015 (accepted).

e ). Follum and J.W. Pierre, “Detection of Forced Oscillations in Power Systems,” IEEE Trans on Power
Systems, (under revision).

. “Modes of Inter-Area Power Oscillations in Western Interconnection,” Official document of the
WECC, Joint Synchronized Information Subcommittee (authored by Oscillation Analysis Work Group

- D. Trudnowski lead author), version 2014.1, May 2014.

D. Trudnowski, “2014 PDCI Probing Tests,” Report to BPA, 2015.
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Conclusions, Future Work, and Risk Factors

e Conclusions

— Developing a fundamental understanding of the nature of FOs
e FO harmonics, FO Shape, “Sinusoid” Noise in an undamped Transient
e Most interesting (and difficult) case: FOs at system mode.

— Develop Mode Meter algorithms that work in the presence of FOs
e Several algorithms developed. Require knowledge of the FO freq.

— Oscillation Detection
e Energy methods appear to work very well
e Source locating is mostly heuristic (system frequency signals)

— MAS Support (BPA, PEAK, EPG)
e Future

— Oscillation Detection
* Are Energy methods the best for power systems?
e Distinguishing between FOs and Transients (“Sinusoid” noise, other physics?)
e Locating the source (can we be more scientific?)

— Conduct detailed comparison of Mode Meter algorithms
® Include FO cases
e Luke Dosiek (Union College)
e Collaboration: Bernie Lesieutre (UWiscon)

e Risk Factor

— Access to real-life data C E RTS
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Extra Slides
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Mode Meter Confidence Bounds

e Mode Meter Confidence Bounds: Indicator of the
statistical performance (mean and variance) of a mode
meter

e Confidence Bound Methods Investigated and Developed

— Monte Carlo Simulations for Error Bounds
— Bootstrap Methods for Error Bounds
— Computationally Efficient Bootstrap Methods

— Recursive Maximum Likelihood (RML) Method for Mode
Estimation with Closed Form Expressions for Error Bounds
(no bootstrapping or monte carlo!)
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Development of Mode Meter Algorithms

thatilerdcinPresenee-otForeced Sseilllatens

e Problem: Periodic Forced Oscillations (at frequencies close
to modes) can fool traditional mode meters into thinking

there is a lightly damped mode
e Solution: Incorporate possibility of FO into Mode Meter
Algorithm

e Two New Algorithms
— LS-ARMA+S (Least Squares Autoregressive Moving Average
plus Sinusoid)
— YW-ARMAH+S (Yule Walker Autoregressive Moving Average
plus Sinusoid)




Example: Small Forced Oscillation

Small FO starting at the 4 minute mark and extending to the 16 minute mark
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Mode Meter Results: Traditional (LS-ARMA) & One
that Incorporates Detecting Forced Oscillations (LS-
ARMA+S)
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