Scale-Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis

PI: Adam C. Powell, IV
Presenter: Steve Derezinski
INFINIUM, Inc.
June 11, 2015
Project ID: LM035

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Overview

TIMELINE
Project start date: 10/1/2011
Project end date: 12/31/2015
Percent complete: 83%

BUDGET
Total project funding: $12M
- $6M DoE
- $6.03M INFINIUM

Funding Received in FY14
- $1M DoE
- $1M INFINIUM

Funding for FY15
- $1M DoE
- $1M INFINIUM

BARRIERS
Magnesium supply base:
Inexpensive and clean domestic source of magnesium

PARTNERS
INFINIUM, Inc. – Project Lead
Praxair, Inc.
Kingston Process Metallurgy
Boston University
Exothermics, Inc.
Spartan Light Metal
Cosma International, Automotive Partnerships Canada
MagPro, LLC

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Relevance

Objectives

• Scale up INFINIUM’s primary magnesium production from laboratory demonstration to pre-production pilot plant

• Budget Period 3
 ▪ Achieve industry standard uptime for prototypes
 ▪ Prepare for plant-scale anode manufacturing
 ▪ Produce and test magnesium automotive parts
 ▪ Model full life cycle costs, energy use & emissions

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Increased Energy Security Reduced Emissions

Reduced Dependence on Foreign Oil

Increased Fuel Efficiency

Lightweight Vehicles

Domestic, Clean, Cost-Effective Magnesium
Phase 1: Alpha Prototype
- Design, build, & test alpha prototype
- Optimize anode design
- Calculate costs, energy use, & emissions
- Produce & test magnesium
- Initiate plant design

Phase 2: Beta Prototype
- Design, build, & test beta prototype
- Achieve prototype-scale anode manufacturing
- Produce magnesium; make & test parts
- Model plant costs, energy use, & emissions

Phase 3: Prototype Operation & Plant Design
- Achieve industry standard uptime for prototypes
- Prepare for plant-scale anode manufacturing
- Produce & test magnesium automotive parts
- Model full lifecycle costs, energy use & emissions
Approach

<table>
<thead>
<tr>
<th>Phase, Due</th>
<th>Project MILESTONES</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Nov 2012</td>
<td>Conduct electrolysis in alpha</td>
<td>Complete</td>
</tr>
<tr>
<td>1 Nov 2012</td>
<td>Demonstrate stable, O_2-producing anode assembly</td>
<td>Complete</td>
</tr>
<tr>
<td>1 Nov 2012</td>
<td>Calculate economically viable costs, energy use, & emissions</td>
<td>Complete</td>
</tr>
<tr>
<td>1 Nov 2012</td>
<td>Achieve sufficient purity to meet Mg alloy specifications</td>
<td>Complete</td>
</tr>
<tr>
<td>1 Nov 2012</td>
<td>Identify potential plant site(s)</td>
<td>Complete</td>
</tr>
<tr>
<td>2 Nov 2013</td>
<td>Conduct electrolysis in beta</td>
<td>Extended to 6/2015</td>
</tr>
<tr>
<td>2 Nov 2013</td>
<td>Produce sufficient anode assemblies for prototypes</td>
<td>Complete</td>
</tr>
<tr>
<td>2 Nov 2013</td>
<td>Provide sufficient Mg for tensile testing</td>
<td>Extended to 10/2015</td>
</tr>
<tr>
<td>2 Nov 2013</td>
<td>Model plant site</td>
<td>Complete</td>
</tr>
<tr>
<td>3 Nov 2014</td>
<td>Achieve industry uptime standard for prototypes</td>
<td>Extended to 11/2015</td>
</tr>
<tr>
<td>3 Nov 2014</td>
<td>Prepare for plant scale anode manufacturing</td>
<td>Extended to 11/2015</td>
</tr>
<tr>
<td>3 Nov 2014</td>
<td>Produce and test magnesium automotive parts</td>
<td>Extended to 11/2015</td>
</tr>
<tr>
<td>3 Nov 2014</td>
<td>Model full life cycle costs, energy use, and emissions</td>
<td>On Schedule</td>
</tr>
</tbody>
</table>

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
New Approach

• Shift in project approach: primary production of magnesium for Mg-Nd master alloy
 ▪ Necessary for AE44, WE43, ZEK100, other alloys
 ▪ Can’t be reliably sourced in US today
 ▪ Direct electrolytic primary production from low-cost oxides simplifies alloying
 ▪ Best first-product for INFINIUM Mg
 ▪ Primary magnesium remains on the radar

• New project goal: produce 500 lbs of primary magnesium and Mg-Nd master alloy for WE43 alloy die casting trial (650 lbs total alloy)

• Technical advantage: simpler cell
 ▪ Make liquid Mg-Nd master alloy at cathode
 ▪ Focus on electrolysis cell development: bath, electrodes, etc.
 ▪ No need for simultaneous coupled condenser development

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
New Approach

Current Path

Mg-Nd Master Alloy → WE43 Castable Magnesium → [Vehicle Frame]

Possible Future Path

ZEK100 Mg Sheet → [Vehicle Component]
Technical Accomplishments & Progress

Alpha Magnesium Furnace

- Version 2.0 2012: one electrolysis site, continuous condenser with successful pours
- Version 3.0 2013: two electrolysis sites, integrated anode-cathode assembly with hot swapping
- Version 4.0 2014: three ports, longest anode run time

Phase 3
- Achieve industry standard uptime for prototypes
- Prepare for plant scale anode manufacturing
- Produce and test magnesium automotive parts
- Model life cycle costs, energy use, emissions

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Technical Accomplishments & Progress

- Magnesium Master Alloy
 - Finalized master alloy process flow sheet
 - Finalized molten salt bath chemistry after testing four composition classes
 - Demonstrated first alpha-scale master alloy production
 - Preliminary beta-scale design, equipment sizing, 500 lbs production timeline

Phase 3
- Achieve industry standard uptime for prototypes
- Prepare for plant scale anode manufacturing
- Produce and test magnesium automotive parts
- Model life cycle costs, energy use, emissions

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Gamma prototype

- Neodymium production cell for master alloy
- Production of 650 lbs WE43 alloy will require approx. 150 lbs of Nd
 - 50 lbs in process on-site
 - 50 lbs in process off-site
 - 50 lbs in transit

Phase 3
- Achieve industry standard uptime for prototypes
- Prepare for plant scale anode manufacturing
- Produce and test magnesium automotive parts
- Model life cycle costs, energy use, emissions

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Technical Accomplishments & Progress

• Production of larger anode tubes
 ▪ Larger tube diameter facilitates higher oxygen flow rate and larger current collector
 ▪ Cast tubes with 1” and 1.25” outer diameter (cf. older 0.75” tubes)
 ▪ Maintained very low porosity (0.5% cf. best COTS >2%), 100% process yield

Phase 3
• Achieve industry standard uptime for prototypes
• Prepare for plant scale anode manufacture
• Produce and test magnesium automotive parts
• Model life cycle costs, energy use, emissions
Technical Accomplishments & Progress

Phase 3
• Achieve industry standard uptime for prototypes
• Prepare for plant scale anode manufacture
• Produce and test magnesium automotive parts
• Model life cycle costs, energy use, emissions

Low Silver Infinium Pure Oxygen Anode™

Copper/nickel conductor
Alumina protection Sheath
LSM Ceramic conductor
Oxygen Transfer Membrane Ag Displacement tube (OTM)
Oxygen Exhaust Vent

YSZ Tube insulated from Cathode
Liquid Silver Annular Anode

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
High-current anode assembly design optimization

Modeling goals:
- Optimize lead geometry for minimal energy use (resistance & heat)
- Displacing solid design
- Thermal stress, oxygen flow

New model:
- 200-400 A industrial tube design
- Axisymmetric, very fast
- Temperature-dependent properties
- Parameterized geometry

Result: optimal electrical-thermal resistance balance

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Technical Accomplishments & Progress

- Energy balance model
 - Temperature-dependent properties
 - Cell and electrode geometry

Embedded in full cost model

Results: global cost vs.
- Temperature
- Tube material type, thickness, diameter
- Current density
- Anode and current collector geometry

Optimize parameters over entire system

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Response to 2014 Reviewers’ Comments

• Is anode lifetime the rate-limiting step? Anode lifetime is an important factor determining production cost. Anode size is the rate-limitation in terms of kg/hr.

• Extended timeline is delaying return on investment, there are many opportunities for pure Mg. We’ve made great progress on a technology challenge, and will continue to advance it toward timely deployment.

• Can this be integrated with downstream processes e.g. rolling, extrusion? Typically the most practical integration is to transport liquid metal from reduction cells directly to the downstream process.

• How does anode life here compare with other electrolysis processes? Other processes e.g. Hall-Héroult aluminum use a consumable anode with lifetime in hours cf. months for our technology.

• What alloys can be produced by this method? Potentially many others depending on properties.

• Where is this project headed next? Production of 650 lbs WE43 alloy, testing in automotive parts, feasibility study for master alloy production plant.
Collaboration & Coordination w/Other Institutions

- **Kingston Process Metallurgy**: contract R&D including transparent crucible electrolysis, salt recycling
- **Boston University**: contract R&D including current collector, salt-metal interactions, current efficiency improvements
- **Praxair**: process gases, argon recycling R&D, thermal modeling
- **Exothermics**: zirconia production/analysis, current collector R&D
- **Spartan Light Metals**: product testing by die-casting tensile specimens and other parts
- **Vehma**: product testing including die-casting vehicle components and testing those components in vehicle structures
- **MagPro**: large batch alloy melting/blending, other processing
Proposed Future Work

Complete Phase III Tasks

- Conduct electrolysis in reconfigured beta system
- Produce 500 lbs primary Mg from MgO
- Produce 650 lbs WE43 alloy for casting
- Make & test magnesium automotive parts
- Model full lifecycle costs, energy use, & emissions
Summary

- Shift to magnesium-neodymium master alloy
- Extended cell operation time
- New larger higher-current anodes
- Focus on longer term Anode operation

- Larger-scale operation and production in plans for 2014-2015

