High Energy Density Lithium Battery

M. Stanley Whittingham
State University of New York at Binghamton
June 10th, 2015

Project ID #
ES231

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
• Project start date: 10-01-2014
• Project end date: 9-30-2017
• Percent complete: 18%

Barriers
• Barriers addressed
 – Higher volumetric energy density
 – Cyclability of conversion electrodes
 – Lower cost
 – Abuse-tolerant safer electrodes

Budget
• Total project funding
 – DOE $1,265,773
 – Contractor share: Personnel
• Funding received
 – FY15: 398k$

Partners
• National Laboratories
 – Brookhaven; Argonne
• Local Industry
 – Through NYBEST
• Academia
 – Electrolytes – UC Boulder, URI
The primary objectives of our work are to:
- Replace the present volume intensive carbon anode
- Replace the present cathodes with ones where more than one Li reacts per transition metal
- Lower the cost of materials and approaches

The relevance of our work is:
- Achieving the above objectives
 - Will increase the volumetric energy density of lithium batteries by > 50%
 - 1 kWh/liter at the cell level
 - Will increase the gravimetric energy density
 - ≥ 300 Wh/kg at the cell level
 - Will lower the cost of tomorrow’s batteries
1. Demonstrate synthesis and complete characterization of CuF$_2$. (Dec. 14) **Completed**
2. Determine discharge product of CuF$_2$. (March 15) **Completed**
3. Begin cyclability testing of CuF$_2$. (June 2015) **Underway**
4. Demonstrate more than 100 cycles on Sn$_2$Fe at 1.5 times the volumetric energy density of carbon. (Sept. 15) **Underway**
5. **Go/No-Go**: Demonstrate cyclability of CuF$_2$. **Criteria**: Capacity of 200 mAh/g over 10 cycles. (Sept-15)
Approach and Strategy: Improved Anodes

- Replace intercalation carbon host with conversion reaction material
 - Allows for much higher capacities
 - Carbon – only 350 Ah/g and 0.8 Ah/liter
 - Pure lithium anode has around 2.5 times the volumetric capacity
 - Place emphasis on tin-based systems
 - Why Sn\textsubscript{2}Fe?
 - 804 Ah/kg and >2000 Ah/liter
 - > 2.5 times that of carbon
 - Protect with carbon coating
 - Initial BATT results promising
 - Safer than carbon and silicon
 - ΔG Sn/Fe-SnO\textsubscript{2} 160 kJ/mole Li
 - ΔG Si-SiO\textsubscript{2} 194 kJ/mole Li
 - ΔG C-CO\textsubscript{2} 2366 kJ/mole Li

\[\text{Pure Li} \]
Approach and Strategy: Improved Cathodes

- Replace materials that react with ≤ 1 Li per transition metal
 - E.g. LiFePO$_4$ and LiCoO$_2$
- By materials that can react with up to 2 Li per transition metal
- Two-pronged approach
 - Intercalation cathode
 - Essentially retain the crystal structure
 - The system VOPO$_4$-LiVOPO$_4$-Li$_2$VOPO$_4$ chosen
 - Conversion cathode
 - Destroy and rebuild the crystal structure
 - The system CuF$_2$ – Cu + 2LiF chosen
 - Higher potential than other fluorides
Approach and Strategy: Improved Cathodes

- **Why the choice of CuF₂ and VOPO₄?**

- **CuF₂**
 - High theoretical energy density of 1874 Wh/kg
 - Compare 1000 Wh/kg and 587 Wh/kg theoretical for complete reaction of LiCoO₂ and LiFePO₄ respectively.
 - Theoretical specific capacity exceeding 500 mAh/g
 - Theoretical potential, 3.5 V, highest amongst the 3d transition metals

- **VOPO₄**
 - Intercalation cathode
 - High energy densities of 1080 Wh/kg and 3.5 kWh/L
 - > 1.5 times that of LiFePO₄
 - Theoretical capacity of ~ 320 Ah/kg (double that of LiFePO₄)
 - Redox potentials at 3.9 V for V⁵⁺/V⁴⁺ and ~ 2.5 V for V⁴⁺/V³⁺
Technical Accomplishments: Barriers being Addressed

- **Low Volumetric Energy Density of Li batteries**
 - Volumetric capacity of today’s Li-ion batteries limited by carbon anode and less than 1 Li/transition metal
 - Find anode material with double the volumetric capacity of carbon
 - Find cathode material that reacts with approaching 2 Li

- **Cyclability of conversion electrodes**
 - Efficiency of known conversion reactions too low

- **High cost of lithium batteries**
 - Reduction of Materials and manufacturing costs
 - Find anode material with double the volumetric capacity of carbon
 - Find

- **Low Safety and Abuse-tolerance**
 - Find an anode that reacts with lithium faster
 - Find thermally stable electrodes under all states of charge
Synthesis of $\text{Cu}_{1-y}\text{Fe}_y\text{F}_2$, $y = 0, 0.2, 0.5$;
- Carbon or MoO$_3$ composite synthesized by high energy ball-milling of CuF$_2$ and FeF$_2$

XRD Characterization:
- Fe is soluble in CuF$_2$ forming a solid solution:
 - Shift in the diffraction peak position
 - Change in lattice parameters
- Both have similar structures.
 - CuF$_2$ distorted rutile structure
 - FeF$_2$ rutile structure
- MoO$_3$ forms a composite: No solid solution.

Milestone 1 – CuF$_2$ synthesized and characterized: forms solid solution with FeF$_2$. Composite with MoO$_3$.

<table>
<thead>
<tr>
<th></th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>β (°)</th>
<th>V (Å3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuF$_2$</td>
<td>4.595(3)</td>
<td>4.560(3)</td>
<td>3.295(1)</td>
<td>95.76(1)</td>
<td>68.71(3)</td>
</tr>
<tr>
<td>Cu${0.5}$Fe${0.5}$F$_2$</td>
<td>4.675(3)</td>
<td>4.642(3)</td>
<td>3.285(1)</td>
<td>90.62(1)</td>
<td>71.39(3)</td>
</tr>
</tbody>
</table>
Milestone 2 – Discharge products of CuF₂/C and Cu₀.₈Fe₀.₂F₂/C identified

CuF₂
- Reaction complete at 1.8 V
- CuF₂ converted to Cu and LiF

Cu₀.₅Fe₀.₅F₂
- Not complete at 1.8V
- Forms LiF and Cu
- Peaks of Fe phase overlap with LiF phase, so cannot be identified
Initial discharge capacity:
- CuF$_2$ shows close to the theoretical capacity of 528 mAh/g
 - More extended cycling underway
- CuF$_2$/MoO$_3$ composite shows higher first discharge capacity
 - Consistent with prior primary battery report
- Cyclability does not warrant further study
Earlier results showed capacity exceeding that of Sn$_2$Fe

- Theoretical capacity of Sn$_2$Fe is 804 mAh/g
- Carbon must contribute to capacity
 - Formation of LiC$_2$ can explain capacity
 - Study initiated to determine role of carbon
Milestone 4. Synthesis optimization of Sn-Fe-C anode
Impact of graphite content

- Carbon essential to mechanochemical synthesis
 - Tin melts at the high temperature caused by high energy ball milling.
 - Fails to react completely leaving globules of tin.
Milestone 4. Synthesis optimization of Sn-Fe-C anode
Impact of carbon type and amount

- Past standard synthesis used a 10:1 ratio of graphite:tin
- Replacing graphite partially by carbon black had no impact on capacity retention, however amount of carbon critical
 - 5:1 carbon:tin leads to larger amounts and greater crystallinity of tin metal
 - 5:1 carbon:tin results in lower capacity retention and lower coulombic efficiency.
- Conclusion: need 10:1 ratio, and source of carbon not important
Milestone 4. Synthesis optimization of Sn-Fe-C anode
LiC₆ vs LiC₂ - does ball-milling activate the carbon?

- **Impact of high energy ball milling on graphite electrochemistry**
 - Crystallinity of graphite reduced
 - Fe₃C impurity phase might form
 - First cycle excess capacity is increased significantly (doubled)
 - Attributed to creation of defects in graphite structure
 - Electrochemical capacity of graphite not significantly increased by high energy ball milling
 - Conclusion: tin needed to activate carbon to LiC₂
Response to 2014 Reviewers’ Comments

New Project – No Comments
Collaboration and Coordination with other Institutions

- **Brookhaven and Argonne National Laboratories**
 - Ex-situ and in-situ synchrotron X-ray diffraction, PDF (pair distribution function) and XAS (X-ray absorption) studies

- **Academia**
 - Working with DOE funded electrolyte efforts (will use their improvements)
 - U. Colorado on electrolytes
 - U. Rhode Island on electrolyte additives

- **Industry**
 - As this is a new project working through NYBEST to disseminate information

- **NYBEST (New York Battery and Energy Storage Technology Consortium)**
 - Building collaborations between Industry, Academia, and Government
Remaining Challenges and Barriers

This Project has only completed the first 6 months

- **CuF$_2$ conversion cathode**
 - Cyclability of electrode

- **VOPO$_4$ intercalation cathode**
 - Long-term stability of structures when two Li are intercalated

- **Nano-Sn$_2$Fe**
 - Long term cycling
 - Cost effective synthesis methods
 - Mechanochemical method
 - Find collaborator to determine viability of mechanochemical manufacturing

- **Lithium incorporation in full cell (3rd year)**
 - Neither electrode presently contains Li
Proposed Future Work

• Copper Fluoride, CuF$_2$
 – Cyclability
 • Determine impact of partial substitution of part of copper
 • Determine impact of electrolyte
 – Is solubility of copper species a key issue?
 - solvable?
 • Determine rates of reaction

• Vanadyl Phosphate, VOPO$_4$
 – Determine optimum synthesis approach
 – Determine long-term cyclability over both redox plateaus

• Anode: Tin-Iron-Carbon Composite, Sn$_2$Fe
 – Improve cycling performance over 100-200 cycles
Summary

Project started October 2014

- Enhanced Cathodes
 - Synthesized and characterized copper fluoride material
 - Pure CuF$_2$ formed, as well as solid solution Cu$_{1-y}$Fe$_y$F$_2$
 - Lattice parameter is a function of the Fe content
 - Products of electrochemical reduction determined
 - For pure CuF$_2$ only copper and lithium fluoride observed
 - For Cu$_{1-y}$Fe$_y$F$_2$ some rutile phase remains
 - Discharge capacity exceeding 300 mAh/g attained
 - Parallel Effort beginning on VOPO$_4$
 - Initial capacities exceed 200 Ah/kg

- Enhanced Anodes
 - Sn$_2$Fe effort transferred from previous BATT funded project
 - Carbon plays a critical role
 - On target to be substantially better than carbon anodes
 - Anticipate up to double volumetric capacity of carbon
Technical Back-Up Slides
Calculation of capacity of Sn-Fe-C composite:
Volumetric energy density exceeds carbon

- **Gravimetric capacity:**
 - Measured reversible capacity of 600 Ah/kg of total composite
 - Sn_2Fe contributes 804 Ah/kg
 - Remainder contributed by carbon
 - Must be C_2Li
 - 1100 Ah/kg
 - Theoretical capacity of 760 Ah/kg for total composite
 - If C_6Li then theoretical capacity is 490 Ah/kg

- **Volumetric capacity:**
 - Approaches 1.6 Ah/cc, based on above value of 600 Ah/kg
Safety of Sn and Si anodes relative to carbon:
On complete combustion to the oxide

- Free energy of formation of oxide:
 - -394.36 kJ/mole for C to CO₂
 - -519.6 kJ/mole for Sn to SnO₂
 - -371.1 kJ/mole for Fe to ½ Fe₂O₃
 - -705.5 kJ/mole for oxidation of Sn₂Fe to SnO₂ and Fe₂O₃
 - -850.7 kJ/mole for oxidation of Si to SiO₂

- Free energy of oxidation per lithium stored:
 - -2366 kJ/Li for a carbon anode
 - -160 kJ/Li for a Sn₂Fe anode
 - -193 kJ/mole for a Si anode

Assumptions: 6 C/Li and 4.4 Li/Sn or Si
Even if substantial amounts of carbon are used with the Sn and Si anodes, they will still generate less heat than graphite alone