Novel Non-Carbonate Based Electrolytes for Silicon Anodes

Project ID: ES219
Dee Strand, Principal Investigator
Wildcat Discovery Technologies
2015 Annual Merit Review
June 9, 2015
Overview

Timeline
- Start Date: 10/01/2013
- End Date: 12/31/2015
- Percent Complete: 68%

Barriers
- Energy density
 - High capacity silicon anodes required to improve cell energy density
- Cycle life
 - Unstable SEI due to large volumetric changes in silicon result in poor cycle life

Budget
- Total Funding: $1,249,723
- DOE Share: $999,778
- Contractor Share $249,945
- Funding Received:
 - FY2013 $3,974
 - FY2014 $406,104
 - FY2015 (thru 4/10) $72,026

Partners
- Lead organization: Electrolyte discovery and optimization
- 3M: Electrode preparation, large cell format assembly and testing
- Argonne National Laboratory
Relevance

Development of non-carbonate electrolyte formulations that

• form stable SEIs on 3M silicon alloy anode, enabling coulombic efficiency* > 99.9% and cycle life > 500 cycles (80% capacity) with NMC cathodes;

• have comparable ionic conductivity to carbonate formulations, enabling high power at room temperature and low temperature;
 • > 5 mS/cm ionic conductivity at 25°C;
 • > 1 mS/cm ionic conductivity at -30°C;

• are oxidatively stable to 4.6V, enabling the use of high energy NMC cathodes in the future; and

• do not increase cell costs over today’s carbonate formulations.

Objectives (3/14 – 3/15)

• Identify best SEI additives for noncarbonate solvent evaluation
• Identify best performing noncarbonate solvents
• Begin optimization
<table>
<thead>
<tr>
<th>Date</th>
<th>Milestones and Go/No-Go Decisions</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>06/2014</td>
<td>SEI additives identified with non-EC based electrolyte which performs comparably to current carbonate/FEC blends</td>
<td>Complete</td>
</tr>
<tr>
<td>12/2014</td>
<td>Go/No-Go Decision: Non-EC containing formulation with SEI package achieves > 50 cycles to 70% capacity in NMC full cells</td>
<td>Complete/Go</td>
</tr>
<tr>
<td>12/2014</td>
<td>Interim 18650 cells assembled and sent to ANL for testing</td>
<td>Complete</td>
</tr>
<tr>
<td>03/2015</td>
<td>Non-carbonate formulations identified which perform comparably to current carbonate/FEC blends</td>
<td>Complete</td>
</tr>
<tr>
<td>06/2015</td>
<td>Non-carbonate formulations identified with > 200 cycles to 80% capacity</td>
<td>Complete</td>
</tr>
<tr>
<td>09/2015</td>
<td>Non-carbonate formulations identified with > 500 cycles to 80% capacity</td>
<td>On Track</td>
</tr>
<tr>
<td>12/2015</td>
<td>Achieve project targets for ionic conductivity and voltage stability</td>
<td>On Track</td>
</tr>
<tr>
<td>12/2015</td>
<td>Final 18650 cells assembled and sent to ANL for testing</td>
<td>On Track</td>
</tr>
</tbody>
</table>
Approach

- Stage 1
 - Develop additive package to form stable SEIs on silicon anode
 - Use PC based electrolyte which does not form SEI on its own (such as EC)
 - Go/No-Go Decision > 50 cycles to 70% capacity with no EC in formulation
 - Further improvements done in conjunction with solvent optimization

- Stage 2
 - Identification of non-carbonate solvents that are stable on additive-based SEI
 - Solvents also need to
 - Enable conductivity targets
 - Match current electrolyte solvents in terms of thermal stability/safety

- Stage 3
 - Formulation optimization
 - Selection of additives to ensure high voltage stability target
 - Further SEI improvements for high temperature stability
 - Cost analysis
Technical Accomplishments – Additive Approach

Experiments:
- Evaluated over 200 additives in PC/EMC and EC/EMC formulations
 - 12 chemical categories/families at multiple concentrations
 - Additives chosen based on expected effects on SEI composition/properties

Outcome:
- Established working hypotheses for beneficial structures/functional groups
- Additives identified for noncarbonate solvent evaluation
- 3 patent applications filed

Next Steps:
- Synthesis and testing of new structures based on key learnings
- Combinations of additives with differing functionalities
Technical Accomplishments – Solvent Approach

- Oxidatively stable
- Does not participate in SEI formation (the additives are going to do that)
 - Reductively stable (aprotic)
 - Reduction potential lower than the additives
- High dielectric constant
 - Polar group in structure, necessary to dissociate salt
 - Carbonyl C = O
 - Nitrile C ≡ N
 - Sulfonyl S = O
- Low viscosity
 - Asymmetry
 - Low MW
 - Low melting point
- Liquid over useful temperature range
- Others...

~ 25 HD Solvents
~ 25 LV Solvents
Salt/Concentration
Additive/Concentration

1000’s of possible formulations
Technical Accomplishments – Solvent Approach

HD/LV Ratios
- LiPF$_6$ Solubility
- LiPF$_6$ Compatibility
- Electrode Stability

HD Solvent Screen (~25)
- LV Solvent (EMC)
- HD/LV Ratio (1)
- Salt (1M LiPF$_6$)
- Additive (5)
- Additive Conc (2)

LV Solvent Screen (~25)
- HD Solvent (6)
- HD/LV Ratio (1)
- Salt (1M LiPF$_6$)
- Additive (1)
- Additive Conc (1)

- Best 6 HD solvents
- Best 5 HD/LV combinations

Optimization
- # Solvents
- Ratios
- Salts
- Additives

Key Metrics:
- 1st cycle capacity/CE
- Cycle life

Current Stage of Project
Technical Accomplishments – Solvent Approach

Identified EC-free combinations similar to control

HD/EMC Combinations

NMC//Si alloy
2.8 – 4.2V
C/10

Colors: Solvent
Shapes: Additive

Control:
EC/EMC (1/2)
1M LiPF₆
Technical Accomplishments – Solvent Approach

- 18650 cells built by 3M, tested by Argonne National Lab
- “Drop-In” new electrolyte formulations – no optimization for cell format change
- Argonne test protocol included pulse testing prior to/during cycle life (not done in Wildcat cells)

Optimization for 18650 cells is required
Technical Accomplishments – Solvent Approach

Noncarbonate formulations similar to control at 50 cycles

- NMC//Si alloy
- 2.8 – 4.2V
- C/10

Colors: Solvent

Control:
- EC/EMC (1/2)
- 1M LiPF₆

HD/LV Combinations

Avg. Cy 50 Capacity Retention (%)

Avg. Capacity (mAh/g, Cy1)
Technical Accomplishments – Solvent Approach

New formulations require re-optimization of salt(s)

<table>
<thead>
<tr>
<th>LV</th>
<th>HD</th>
<th>LiPF6</th>
<th>Salt 1</th>
<th>Salt 2</th>
<th>Salt 3</th>
<th>Salt 4</th>
<th>Salt 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cy1 Capa. mAh/g</td>
<td>Capa. Reten (%)</td>
<td>Cy1 Capa. mAh/g</td>
<td>Capa. Reten (%)</td>
<td>Cy1 Capa. mAh/g</td>
<td>Capa. Reten (%)</td>
</tr>
<tr>
<td>Control</td>
<td>134.2</td>
<td>83.6</td>
<td>134.2</td>
<td>83.6</td>
<td>134.2</td>
<td>83.6</td>
<td>134.2</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>132.4</td>
<td>72.0</td>
<td>122.4</td>
<td>30.3</td>
<td>129.4</td>
<td>21.7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>134.1</td>
<td>80.2</td>
<td>122.6</td>
<td>33.0</td>
<td>131.6</td>
<td>33.9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>122.9</td>
<td>71.8</td>
<td>80.3</td>
<td>41.5</td>
<td>131.4</td>
<td>53.3</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>124.5</td>
<td>78.4</td>
<td>31.1</td>
<td>59.4</td>
<td>125.9</td>
<td>26.3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>131.6</td>
<td>75.7</td>
<td>116.6</td>
<td>62.5</td>
<td>131.9</td>
<td>73.9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>123.1</td>
<td>86.9</td>
<td>126.1</td>
<td>54.2</td>
<td>131.1</td>
<td>76.0</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>133.8</td>
<td>80.8</td>
<td>90.6</td>
<td>54.5</td>
<td>121.6</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>131.7</td>
<td>87.9</td>
<td>-</td>
<td>-</td>
<td>118.6</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>136.5</td>
<td>84.4</td>
<td>-</td>
<td>-</td>
<td>118.5</td>
<td>86.1</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>134.0</td>
<td>86.9</td>
<td>122.1</td>
<td>66.2</td>
<td>121.2</td>
<td>90.4</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>135.5</td>
<td>85.1</td>
<td>-</td>
<td>-</td>
<td>130.6</td>
<td>81.8</td>
</tr>
</tbody>
</table>

Capacity Retention @ 100 cycles
New formulations require re-optimization of salt(s)
Technical Accomplishments – Summary

- To date, over 5000 cells have been assembled and tested
- Beneficial additives have been identified for
 - EC-containing formulations
 - EC-free formulations
- Additives used to screen non-carbonate solvents
 - “Head start” on additive development for traditional solvents
 - Structure-performance relationships derived from additive screening with purchased and custom compounds
- Non-carbonate solvent formulations identified that outperform the EC-based control formulations
- Gas generation in non-carbonate formulations similar to EC-based control
- Additional testing on other Si sources in progress
Responses to Reviewer Comments

- **Project focus on 3M silicon anode is too narrow; recommend benchmarking formulations on other materials**
 - Wildcat is currently doing testing of promising additives and noncarbonate formulations on Si//carbon composite electrodes received from Argonne National Lab

- **Recommend utilizing more analytical capability; perform post-mortem analysis to gain more understanding**
 - Wildcat plans on doing this as we down-select to the final solvent choices

- **More collaboration is recommended**
 - Now including Argonne to test 18650 cells and supply electrodes
 - Will begin analytical work at UCSD
 - In discussion with other silicon anode suppliers regarding evaluations

- **Recommend breaking out results for “best” formulations to more clearly see the progress**
 - Showed more traditional cycle life graphs on Slide 16 for best formulations in this presentation
Responses to Reviewer Comments

- **Reviewer would like more information about reproducibility of data/experiments**
 - All initial testing is done in duplicate, with averages represented on graphs
 - All promising additives/formulations are repeated
 - As we move into optimization, testing is done in triplicate or quadruplicate

- **Reviewer recommended more intimate knowledge of 18650 cell construction and testing to gain insight**
 - We plan on multiple rounds of 18650 cells with best formulations to optimize for that cell format

![EC/EMC Control (quadruplicate)](image-url)

NMC//Si alloy
2.8 – 4.2V
C/5

Avg. Discharge Capacity (mAh/g)

Cycle #
Collaborations

Lead organization
- Design of experiments/ideas
- High throughput evaluation

Fabrication of electrodes (anodes and cathodes)
- 18650 cell assembly and testing

Fabrication of electrodes (anodes and cathodes)
- Supply of novel additives, salts
- 18650 cell testing

Access to analytical characterization (2015)
Remaining Challenges & Barriers

- Further improvements to cycle life (500 cycles)
- Other metrics
 - High voltage stability
 - Power/rate/conductivity
- 18650 cell optimization
Proposed Future Work

- Cycle life improvements
 - Additive optimization
 - Additive combinations

- High voltage stability
 - Formulation/solvents (expect new solvents to be stable)
 - High voltage additives

- 18650 cell optimization
 - Several rounds of cell builds
 - Optimize formulation for larger cell format

- Test vs. other silicon materials
 - In progress
Summary

- To date, over 5000 cells have been assembled and tested
- Beneficial additives have been identified for
 - EC-containing formulations
 - EC-free formulations
- Additives used to screen non-carbonate solvents
 - "Head start" on additive development for traditional solvents
 - Structure-performance relationships derived from additive screening with purchased and custom compounds
- Non-carbonate solvent formulations identified that outperform the EC-based control formulations
- Gas generation in non-carbonate formulations similar to EC-based control
- Additional testing on other Si sources in progress
Acknowledgements

Wildcat:
Ye Zhu, Marissa Caldwell, Gang Cheng

3M:
Ang Xiao, Kevin Eberman, Dinh Ba Le, Jagat Singh

ANL:
Ira Bloom, John Basco, Steve Trask, Bryant Polzin, Greg Krumdick