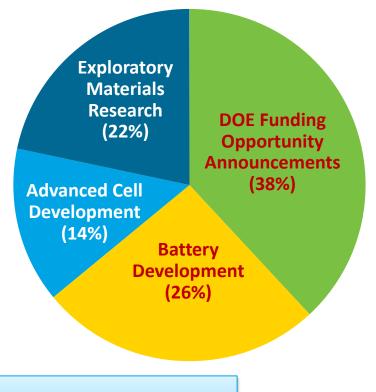
VEHICLE TECHNOLOGIES OFFICE

Energy Efficiency & Renewable Energy

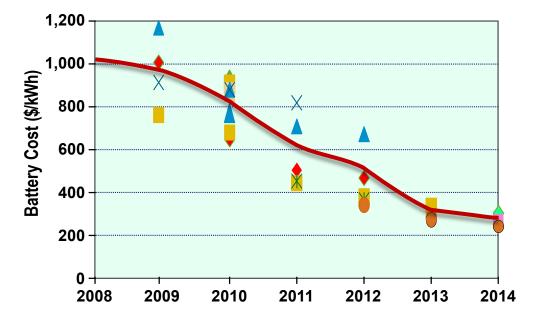
Overview of the DOE Advanced Battery R&D Program June 8, 2015 Peter Faguy Energy Storage Hybrid Electric Systems



ENERGY Energy Efficiency & Renewable Energy

Advance the development of batteries and other electrochemical energy storage devices to enable a large market penetration of electric drive vehicles.

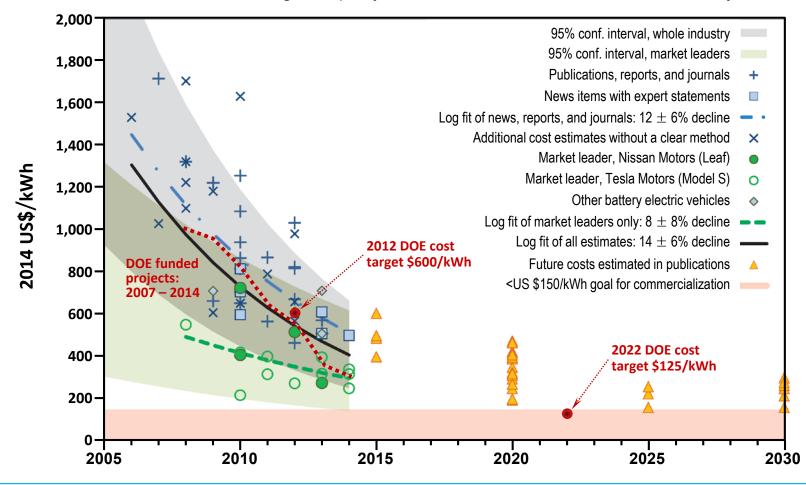
Battery/Energy Storage R&D Funding (\$M)		
FY 2013	\$88	
FY 2014	\$85	
FY 2015	\$82.7	
FY 2016 (request)	TBD	
inclusive of SBIR/STTR		


FY 2015 Budget: \$83M

Reduce the cost of a PEV battery to \$125/kWh by 2022

DOE/USABC reduced the cost of PEV batteries by 70% and doubled their energy density during the past 5 years

- □ Projected cost of advanced PHEV battery technology of \$289/kWh of useable energy, on average.
- Batteries were sized to PHEV 40 packs (~14 kWh).
 - These battery development projects focus on advance cathodes, processing improvements, cell design and pack optimization.
 - Most batteries use advanced but already commercialized chemistries.
- Results based on prototype cells & modules meeting DOE/USABC performance targets.

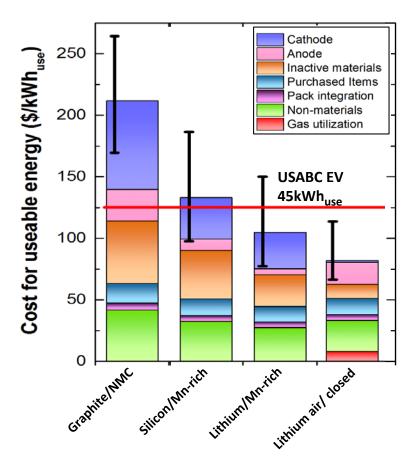

Detailed USABC battery cost model used to estimate the cost of PEV battery packs assuming that 100,000 batteries are manufactured annually.

Cost Parity with ICEs is reachable

U.S. DEPARTMENT OF

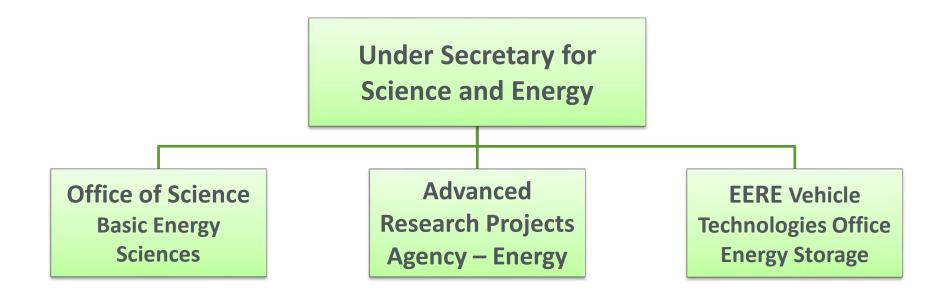
Energy Efficiency & Renewable Energy

Production of EDV batteries has been ~ doubling globally every year since 2010 with ~ 8% annual cost reductions for major manufacturers. Economies of scale continue to push costs towards \$200/kWh. With new material chemistries and lower-cost manufacturing, cost parity with ICEs should be reached in the next ten years.



"Rapidly falling costs of battery packs for electric vehicles", B. Nykvist and M. Nilsson; Nature, Climate Change; March 2015, DOI: 10.1038/NCLIMATE2564

Projected Cost for a 100kWh Battery Pack


- Extensive cost modeling has been conducted on advanced battery chemistries using the ANL BatPaC model.
 - Lithium-ion: silicon anode coupled with a high capacity cathode presents moderate risk pathway to less than 125/kWh_{use}
 - Lithium metal: a higher risk pathway to below \$100/kWh_{use}
- These are the best case projections: all chemistry problems solved, performance is not limiting, favorable system engineering assumptions, high volume manufacturing

EDV Energy Storage R&D at DOE

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Fundamental research to understand, predict, and control matter and energy at electronic, atomic, and molecular levels.

- JCESR (Hub)
- EFRCs
- Core Scientific Research

High-risk transformational research with potential for significant commercial impact.

- AMPED (Battery Controls)
- RANGE (Flow, Solid State, Multifunctional)

Applied battery materials, cell, and pack R&D to enable a large market penetration of EDVs.

- BMR
- ABR
- USABC
- CAEBAT

VTO Battery R&D Activities and Target Metrics

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Advanced Battery Materials Research

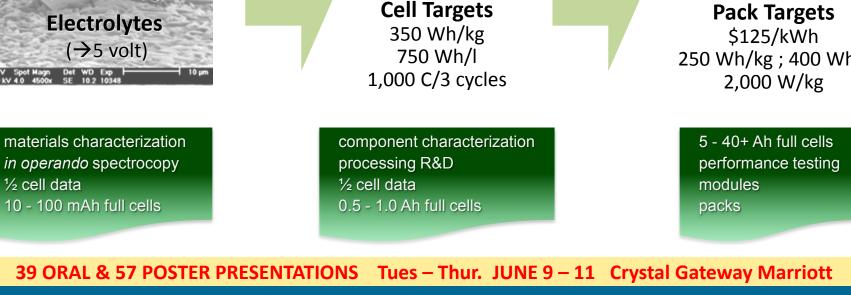
 New materials discovery
 Structure –activity exploration at materials level

Anodes

(600 + mAh/g)

Cathodes

(300+ mAh/g)


Applied Battery Research

- ✓ Cell chemistry optimization
- Advanced processing technologies
- ✓ Life Improvement

Advanced Battery Development

- ✓ Performance Optimization
- ✓ Cost Reduction

FY 2014 Vehicle Technologies Program Wide FOA (DE-FOA-0000991)

Awardee	Technology	Funding		
Michigan State University	Polycrystalline membranes in Li-metal and Li-sulfur batteries	\$1.23M		
Stanford University	Nanomaterials to improve interface between lithium metal anodes and electrolytes to improve cycle life	\$1.35M		
University of Pittsburgh	High-throughput cost-effective approaches to scale-up synthesis of high-capacity cathodes	\$1.25M (with TARDEC)		
Binghamton University	Sn-Fe-C composite anodes	\$1.22M		
Liox Power	High energy, high power, highly reversible Li-air batteries	\$1.5M		
University of Maryland	Interfacial impedance issues in solid state Li-ion batteries	\$1.21M (with TARDEC)		
Oak Ridge National Laboratory	Nanoindentation to determine mechanical properties and identify causes of premature failure at protected lithium interface	\$1M (with TARDEC)		
Texas A&M University	Improved electrolyte chemistry and cathode architecture for Li- sulfur batteries	\$0.99M		
Brookhaven National Laboratory	Low-cost anodeless Li-sulfur battery utilizing dual-functional cathode additives	\$1.5M (with TARDEC)		
Solid-state electrolytes				
Li-air systems				
	Li-sulfur systems			
	Protec	cted Li metal		
ORAL SESSIONS Tues. – Thur. JUNE 9 - 11 (Tien Duong)				

FY2014 Vehicles Technologies Incubator FOA (DE-FOA-0000988)

Awardee	Technology	Funding
Miltec UV International, LLC	High speed precision printing and UV curing for ceramic separators for LiBs	\$1.56M
Sila Nanotechnologies	Core shell non-intercalation cathodes and anodes	\$1.00M
24M Technologies, Inc.	High active loading cathodes by new manufacturing approach	\$1.95M
Amprius	A commercially scalable process for silicon anode prelithiation	\$1.26M
Lambda Technologies, Inc	Variable frequency microwave drying of electrodes	\$1.01M
Parthian Energy LLC	Unique S-cell design for reduction of inactive materials	\$0.59M

POSTER SESSION Wed. JUNE 10 (Brian Cunningham, Tien Duong, Peter Faguy)

Advanced Battery Development Performance Optimization and Cost Reduction

Energy Efficiency & Renewable Energy

USABC Cooperative Agreement

Support battery manufacturers to develop batteries that meet EDV performance, safety, and cost requirements.

□ Focus

- Cell design/fabrication
- Module/pack design & fabrication
- Cell component enhancement (electrolyte, separator)
- Detailed cost modeling
- Application specify battery requirements and associated test procedures.

G Chem

Power Inc

SYSTEMS

Recent USABC Awards

EV Battery Development: Amprius, Envia Systems, LG Chem Power, SEEO

PHEV Battery Development: Xerion

12V Start/Stop Battery Development: Saft, Maxwell Technologies, LG Chem Power

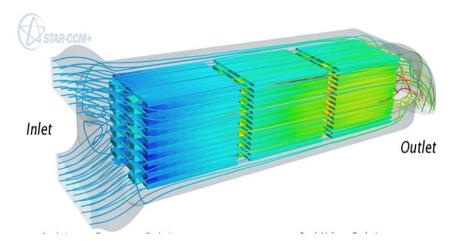
Open USABC Solicitations

EV, PHEV, 12V start/stop, and 48V HEV battery development

Novel electrolytes, novel separators, recycling

POSTER SESSION – Tues/Wed JUNE 9,10 (David Howell, Brian Cunningham)

ann


Energy Efficiency & Renewable Energy

Computer-aided Battery Energy Tools (CAEBAT)

Support battery manufacturers to develop batteries that meet EDV performance, safety, and cost requirements.

Focus

 Computer Aided Engineering tools for EDV Batteries accelerate design of highperformance lithium-ion batteries through development and validation of multi-scale, multi-physics modeling tools.

Commercialization: The three contractor teams of the CAEBAT project have released three competitive electrochemical-thermal software suites for battery simulation and design.

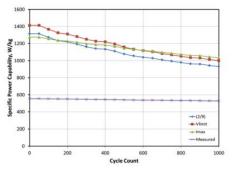
- GM and partners have developed a flexible and efficient 3-D battery modeling tool based on the Fluent multi-physics simulation platform.
- CD-adapco and partners have developed electrochemical-thermal module for the Star-CCM+ multi-physics simulation platform.
- EC Power and partners developed thermal electrochemical design tools in AutoLion[™].

These software tools were validated with comprehensive battery test data. More than 50 end-users (material and cell developers, pack integrators, vehicle manufacturers, and others) have used these tools to consider battery design for better performance, life, and thermal response characteristics.

POSTER SESSION Tues. JUNE 9 (Brian Cunningham)

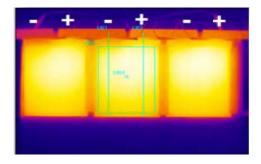
Advanced Battery Development Testing

ENERGY Energy Renew


Energy Efficiency & Renewable Energy

DOE national labs provide independent testing support to USABC, IC³P, incubator, and other contracts to confirm battery performance, life, thermal performance, and abuse characteristics.

They also lead test methods development, test manual writing, and requirements analysis efforts.


Sample of cells tested in 2014:

3M, Actacell, Amprius, Cobasys, Dow Kokam, Envia, Farasis, Hydro Quebec, JCI, LG Chem, Miltec, Navitas, Penn State, SKI, Optodot, Sakti3, SEEO, Tiax

<u>Thermal</u>

National Renewable Energy Laboratory

Sample of cells tested in 2014: Farasis, JCI, Leyden Energy, LG

Farasis, JCI, Leyden Energy, LG Chem, SK Innovation

<u>Abuse</u>

Sample of cells tested in 2014: Entek, Farasis, JCI, LG Chem, Leyden Energy, Maxwell, Saft

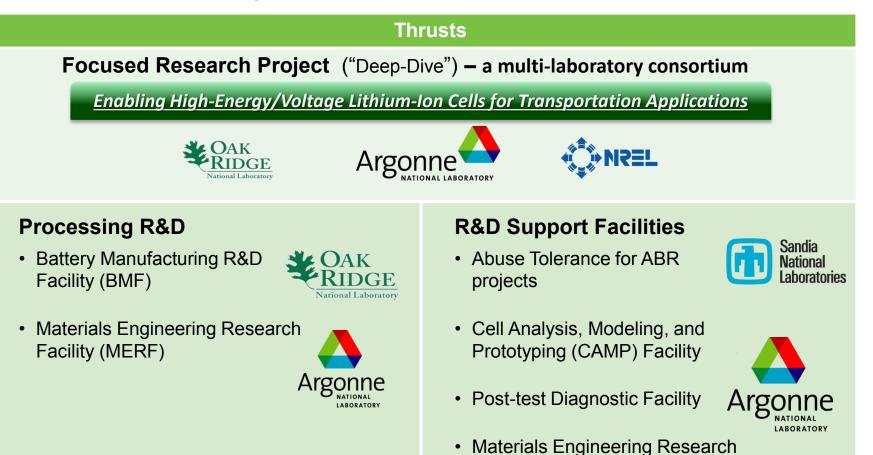
POSTER SESSION Tues. JUNE 9 (Brian Cunningham)

ENERGY Energy Efficiency & Renewable Energy

FY2013 FOA Awards Improvements in Cell Composition, Chemistry, and Processing

IC³P Projects:

- Cell chemistry focus
- Full cell deliverables: baseline and advanced (1 - 3 Ahr pouch & 18650)
- Team-based expertise / workload
- 24 month duration
- \$2M \$4M funding



POSTER SESSION Tues. JUNE 09 (Peter Faguy)

U.S. DEPARTMENT OF ENERGY F

Energy Efficiency & Renewable Energy

Applied Battery Research Efforts at National Laboratories

Facility (MERF)

Advanced Battery Materials Research (BMR)

Energy Efficiency & Renewable Energy

Anodes

- □ Intermetallics/alloys
- Nanophase metal oxides
- □ Tailored SEI and new binders

Cathodes

- Layered-layered oxides
- High voltage spinels and oxides
- Metal phosphates
- Modified surfaces

Electrolytes

- □ High voltage electrolytes
- □ Solid polymer
- Electrolytes for Li metal

Beyond Lithium-Ion

- Inhibit dendrite growth
- Efficient utilization of sulfur
- □ Bifunctional catalyst for Li-O₂

Participants

Universities:

- Brigham Young University
- Drexel University
- Michigan State University
- Massachusetts Institute of Technology
- Pennsylvania State University
- Stanford University
- Binghamton University (SUNY)
- Texas A&M University
- University of California, Berkeley
- University of California, San Diego
- University of Cambridge
- University of Colorado, Boulder
- University of Maryland
- University of Massachusetts, Boston
- University of Pittsburgh
- University of Texas, Austin

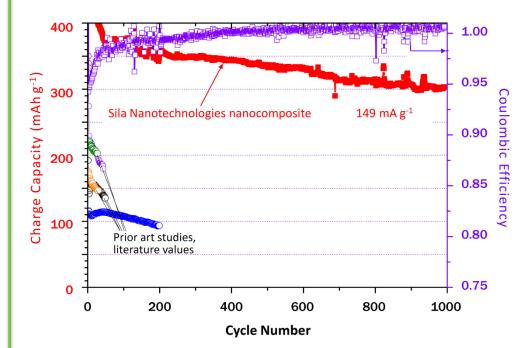
National Labs:

- ANL
- BNL
- LBNL
- NREL
- ORNL
- PNNL

Industry:

- Daikin
- GM
- Hydro Quebec/ IREQ
- WildCat Discoveries/3M

ORAL PRESENTATIONS Tue-Thurs, JUNE 9,10,11 (Tien Duong)


Battery R&D Highlights FeF₂ Conversion Cathode Material

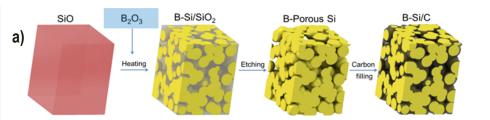
ENERGY Energy Efficiency & Renewable Energy

Low Cost, High Capacity Non-Intercalation Chemistry Automotive Cells

- Lithium metal fluoride (MFx) containing cathodes high theoretical energy density, but are highly unstable and suffer from low capacity utilization and very low power
- Sila's results on FeF₂ / carbon nanocomposite cathodes show potential: excellent stability, rate performance, and coulombic efficiency at the material level
- Sila materials show significantly higher capacity and cycle stability demonstrated vs. state of the art FeF₂ cathodes reported in literature

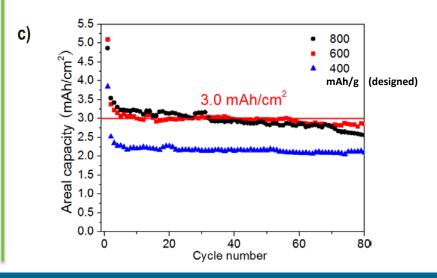
Charge capacities and coulombic efficiencies of nanocomposite $FeF_2IC - Li$ cells compared to previously reported literature values. (Source: Sila Nanotechnologies.)

Battery R&D Highlights Nanoporous Si-C Anode and Binders


U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

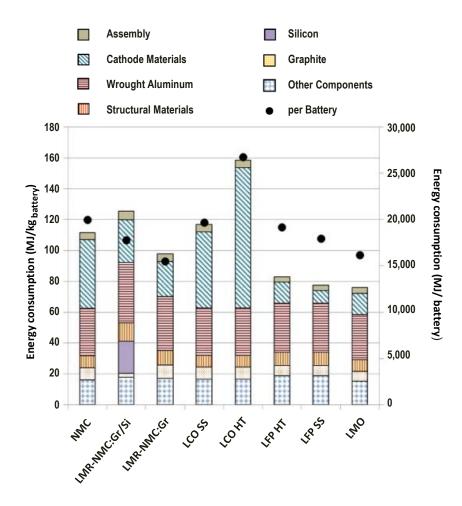
High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications


- Scaled-up developed micron-sized Si-C and B-doped Si/SiO₂/C composite anode
- Novel cross-linked binders enable to fabricate high mass loading electrodes with good flexibility and cycling stability
- Achieved high efficiency of 99.7%, and low capacity fading due to volume change and particle fracture

b)

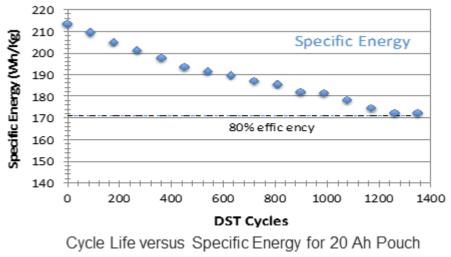
- a) Schematic representation of nanocomposite synthesis;
- **b)** SEM image of the boron doped micron-sized nanoporous Si-C composite;
- c) Representative cycling performance for blended anodes (B-Si/C : graphite) with different specific capacities and using a novel cross-linked binder

(Source: Pennsylvania State University)


Battery R&D Highlights Energy Intensity of EV Battery Production

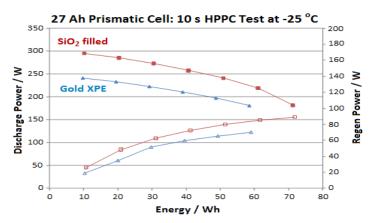
Energy Efficiency & Renewable Energy

- The energy intensity of EV battery production from cradle-to-gate varies greatly based on the cathode material used.
- Materials processing represents the majority of the energy required to manufacture EV batteries.
- Recycled material demonstrate energy efficiencies, and potential cost reduction opportunity.



Energy intensity of battery EV production with 28 kWh batteries from cradle-togate with different cathode materials (Source: ANL)

U.S. DEPARTMENT OF


Energy Efficiency & Renewable Energy

Envia Systems worked to develop and integrate their high capacity cathode with commercial graphitic anodes and high voltage electrolytes into high capacity pouch cells to meet the long-term USABC goals for electric vehicles.

Cells

Entek has addressed high temperature separator integrity by producing silica-filled membranes with ultra-high molecular weight polyethylene. The separators have <5% shrinkage at 200°C. In addition, the silica filler provides other benefits (higher porosity, faster wetting), which lead to unanticipated improvements in battery performance.

HEV cells with a silica-filled separator show improved low-T power over cells with an UHMWPE separator.

VTO Energy Storage FY2015 FOAs

Solicitations are currently in the selection process

FY 2015 Vehicle Technologies Program Incubator FOA (DE-FOA-0001213)

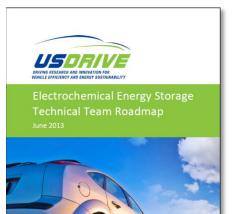
to support innovative technologies and solutions not			
represented in a significant way in VTO's' existing Multi-			
Year Program Plans (MYPPs) or current portfolios.			

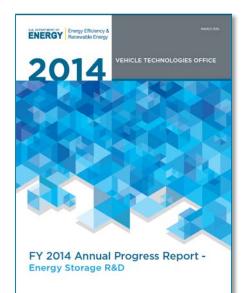
- \$14M total (Energy Storage, ~~50%)
- \$0.5M \$3M, 1 3 year projects

FY 2015 Vehicle Technologies Program Wide FOA (DE-FOA-0001201)

AOI-4: Advances in Existing and Next-Generation Battery Material Manufacturing Processes	Processing R&D projects
AOI-5: Advances in Electrode and Cell Fabrication Manufacturing	 ~3 to be funded in each category \$1.5M - \$3M, 2 – 3 year projects
AOI-6: Electric Drive Vehicular Battery Modeling for Commercially Available Software	 CAEBAT \$1M - \$2M, 3 - 4 projects

For More Information...


U.S. DEPARTMENT OF


ENERGY

USDRIVE Energy Storage R&D Roadmap

- Tabulates performance and cost targets for HEV batteries and EV batteries.
- Describes ongoing /planned R&D efforts on EDV battery technologies.
- □ For a copy of the roadmap, visit:

http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/eestt_roadmap_june 2013.pdf

Energy Storage R&D Annual Progress Report for FY 2014

- Describes all energy storage R&D projects funded by DOE Vehicle Technologies Office (VTO) at a national laboratory or in partnership with industry.
- □ For obtaining a copy of the Annual Progress Report, visit: http://energy.gov/eere/vehicles/downloads/vehicle-technologies-office-2014energy-storage-rd-annual-report

Energy Efficiency & Renewable Energy

Brian Cunningham Brian.Cunningham@ee.doe.gov

Tien Duong Tien.Duong@ee.doe.gov

Peter Faguy Peter.Faguy@ee.doe.gov

David Howell David.Howell@ee.doe.gov