Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology

Key Idea: Highly permeable conduits along faults channel fluids from shallow aquifers to the deep geothermal reservoir tapped by the production wells.

Brady’s Hot Springs, Nevada

1. U. Wisconsin-Madison (prime)
2. Berkeley N.L.
3. Livermore N.L.
4. Ormat Technologies, Inc.
5. U. Nevada-Reno
6. Silixa Ltd.
7. Temple U.

PoroTomo
Project Officer: Bill Vandermeer
Total Project Funding: $2,319,973 (Govt. Share to UW)
May 12, 2015

This presentation does not contain any proprietary confidential, or otherwise restricted information.
Objective: assess an integrative technology to:

- characterize spatial distribution
- monitor temporal changes
- rock-mechanical properties of EGS reservoir
- in 3 dimensions
- spatial resolution better than 50 meters
- study volume: 1500 × 500 × 400 meters

Infer critically important parameters:

- Young’s modulus
- Poisson’s ratio
- saturation
- porosity
- density

Expected outcomes:

- Phase I: Proof of concept (existing data)
- Phase II: small-scale prototype (at Brady)

Impact:

technical specifications for full-scale deployment
Scientific/Technical Approach

Technology Performance Metric: *resolution in meters* of a feature in the modeled 3-D distribution of a rock mechanical property as determined by the dimension of a visible checkerboard pattern at 200 m depth in a test using simulated data

60 m

Go/No-Go decision at Stage Gate Review:

If the expected values of the metrics are equal to or better than the minimum requirements, then the project will proceed.
Adjoint tomography can recover rock-mechanical properties
estimating many parameters → finer resolution
monitor CO₂ injection from cross-well seismic experiment (4 sources, 20 receivers)
estimate bulk density

forward wave field: \(\rho \frac{\partial^2 s}{\partial t^2} = \nabla \cdot T + f \)

adjoint wave field: \(\rho \frac{\partial^2 s^\dagger}{\partial t^2} = \nabla \cdot T^\dagger + f^\dagger \)

waveform adjoint source: \(f^\dagger(x) = \sum_{r=1}^{N} [s(x_r, T - t) - d(x_r, T - t)] \delta(x - x_r) \)

\[\delta \chi = \int_{\Omega} [K_\rho \delta \ln \rho + K_{\rho f} \delta \ln \rho_f + K_m \delta \ln m + K_\eta \delta \ln (\eta/k) + K_B \delta \ln B + K_C \delta \ln C + K_M \delta \ln M + K_{\mu_f} \delta \ln \mu_f] d^3 x \]

model used to **generate** simulated data set

bulk density [kg/m³]

Subtask 9.1 Inverse modeling of seismic data (Morency, Maztel, Thurber, Fratta, Zeng)

(after Morency et al, GJI 2011)
3D velocity structure and relocation of hypocenters

Horizontal slice at 1400 m depth

Vertical slice striking SW-NE

P-wave velocity (km/s)

Elevation w.r.t. sea level (km)

Subtask 3.1: Ambient noise tomography (Matzel, Foxall, Singh)
Simulation of seismic wave field

Brady seismic waveform propagation (shot at (250,1500,0))
1.5 seconds after shot

Subtask 4.1: Design of source-sensor configuration for seismic tomography (Fratta, Foxall, Thurber, Matzel, Morency, Greer, Coleman, Zeng)
Distributed Acoustic Sensing (DAS)

Subtask 3.2: DAS at Garner Valley (Wang, Fratta, Thurber, Lancelle, Zeng, Lord)

Dispersion curves

Noise correlation functions

\[c = 179 \text{ m/s for } f = 8 \text{ Hz} \]
Accomplishments, Results and Progress

InSAR data spanning 2013-May-13 to 2014-May-11

wrapped phase in 16-mm cycles

Subtask 3.4: Analysis of existing InSAR data (Feigl, Ali, Baluyut)
Accomplishments, Results and Progress

Data: InSAR data spanning 2004-2014 at Brady
Model: dislocation sink buried in an elastic half space
Estimated parameter: rate of volume decrease of the order of \(\sim 3 \) liters/second

Subtask 3.4: Analysis of existing InSAR data (Feigl, Ali, Baluyut)

\[
Rate = \frac{dV}{dt} = \dot{V}
\]

average rate of volume change \(\frac{dV}{dt} \)

\[
\begin{align*}
= & \quad -31 \pm 0.1 \times 10^3 \text{ m}^3/\text{yr} \\
\cong & \quad -1 \text{ liter/second} \\
\cong & \quad -16 \text{ gallon/minute}
\end{align*}
\]

\text{Total volume change since 2004}

\[
\int V \, dt
\]

quadratic function of time

\[
\begin{align*}
& = -380 \pm 20 \times 10^3 \text{ m}^3 \\
& \cong -400 \text{ Megaliter} \\
& \cong -100 \text{ million gallons}
\end{align*}
\]
Hydraulic tomography from pumping tests

Boise Hydro-geophysical Research Site
pumping tests
- stimulate flow
- measure pressure
- fiber optic transducers

estimate in each grid cell:
- hydraulic conductivity K
- storage coefficient

Resolution ~ sensor spacing:
 Boise:
 - 1 m vertical
 - 5 m horizontal
 Brady:
 - 300 to 500 m horizontal

Subtask 3.8: Development & application of hydraulic tomography at Boise (Cardiff, Wang, Lim)
Distributed Temperature Sensing (DTS)

Subtask 3.7: Analysis of existing DTS data at Guelph (Coleman, Greer, Wang, Cardiff, Fratta)
Accomplishments, Results and Progress

• Bayesian, adjoint tomography can recover rock-mechanical properties with fine resolution.
• Ambient noise tomography (ANT) at Brady estimated a 1-dimensional model of seismic velocity and attenuation with a vertical resolution of the order of ~100 m at a depth of 200 m.
• Analysis of previously collected DAS data at Garner Valley led to: (a) invention of a Time-Frequency Filter (TFF) to remove traffic noise and source harmonics, (b) measurement of directivity and sensitivity of DAS response, (c) measurement of near-surface Rayleigh-wave velocity dispersion from a swept-frequency, active source, and (d) noise correlation functions between pairs of receiver points.
• InSAR data spanning 2004-2014 at Brady have been analyzed using inverse modeling to estimate the rate of volume decrease of the order of ~3 liters/second of a dislocation sink buried in an elastic half space.
• Data on pressure, temperature, production, and injection at Brady for the time interval 2004-2014 are being analyzed to distinguish between hydro-mechanical and thermo-elastic models.
• GPS data at stations BRDY and BRAD for the time interval from 2009 through 2014 have been collected, archived, distributed, and analyzed to yield time series of daily estimates of relative, 3-dimensional position.
• Hydraulic tomography on pump testing data estimates hydraulic conductivity and storage coefficient with a spatial resolution comparable to the distance between sensors.
• A Distributed Temperature Sensing (DTS) experiment at Guelph has been analyzed to characterize flow through fractures under natural and forced conditions with a vertical resolution of the order of 0.1 meter.
• An initial model of rock mechanical properties incorporate geologic information.

Key Idea: Highly permeable conduits along faults channel fluids from shallow aquifers to the deep geothermal reservoir tapped by the production wells.
• Hypothesis 1: Injecting cooled water → thermal contraction
• Hypothesis 2: Changes in pressure and saturation → poroelastic compaction
• Hypothesis 3: Dissolution in water flowing through fractures removes minerals from rock
Future directions

Issues:
- Value of information
- Software licensing

Stage Gate Review:
- 24-25 Sept. 2015
- evaluate metrics

Phase II:
- demo prototype
- analyze data

Deployment plan
March 2016
- 4 obs. intervals
- 9000 m DAS
- 400 m DTS + DAS
- 240 seismometers
- 240 vibroseis
- 5 P & T sensors
PoroTomo project is on track

- “The EERE project team has assigned a Green overall project health indicator.” (based on first quarterly report, Jan. 2015)
- Analysis of existing data in Phase I will evaluate the technology performance metric at Stage Gate Review in September 2015.

Technology performance metric is resolution in meters

of a feature in the modeled 3-D distribution of a rock mechanical property (e.g., Poisson’s ratio), as determined by the dimension of a visible checkerboard pattern at 200 m depth in a test using simulated data

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Seismology $^{(a)}$</th>
<th>Geodesy $^{(b)}$</th>
<th>Hydrology</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current state of the art at Brady</td>
<td>200 m</td>
<td>500 m</td>
<td>500 m</td>
<td>200 m</td>
</tr>
<tr>
<td>Minimum requirement: improve resolution to</td>
<td>100 m</td>
<td>500 m</td>
<td>500 m</td>
<td>200 m</td>
</tr>
<tr>
<td>Target: improve resolution to</td>
<td>50 m</td>
<td>250 m</td>
<td>250 m</td>
<td>50 m</td>
</tr>
<tr>
<td>Beyond (“over”) target: improve resolution to</td>
<td>25 m</td>
<td>100 m</td>
<td>100 m</td>
<td>25 m</td>
</tr>
</tbody>
</table>

(a) Approximate resolution of seismic reflection survey (Queen et al., 2010, Lin et al., 2011).
(b) Inverse modeling of InSAR data elastic properties (Ali et al., 2014a)
Figure 1. PoroTomo team on a hill overlooking the natural laboratory, including (from left to right), Dante Fratta¹, David Lim¹, Neal Lord¹, Kurt Feigl¹, Janice Lopeman², Joe Greer³, Thomas Coleman³, Mike Cardiff¹, Christina Morency⁶, Michelle Robertson⁷, John Akerly², Eric Matzel⁶, Bill Foxall⁷, Bret Pecorora⁴, Chelsea Lancelle¹, Corné Kreemer⁴, Martin Schoenball⁵, Paul Spielman². The PoroTomo team includes scientists and engineers from: (1) University of Wisconsin-Madison Department of Geoscience, (2) Ormat Technologies, Inc., (3) Silixa Ltd., (4) University of Nevada-Reno, (5) Temple University, (6) Lawrence Livermore National Laboratory, (7) Lawrence Berkeley National Laboratory [Photo by Dan Koetke using Neal Lord’s camera 2014/10/16]
The slides following this one may be useful for answering questions during the 10-minute Q & A period.

I am not planning to show the following slides during the 20 minutes allowed for presentation.
Submissions to DOE Geothermal Data Repository

Brady's Geothermal Field Seismic Network Metadata (Subtask 3.1),
http://gdr.openei.org/submissions/469

Brady Geothermal 1D seismic velocity model (Subtask 3.1),
http://gdr.openei.org/submissions/472

Metadata for DAS at Garner Valley (Subtask 3.2),
http://gdr.openei.org/submissions/465

Poroelastic references (Subtask 3.3),
http://gdr.openei.org/submissions/463

Analysis of existing InSAR data (Subtask 3.4),
http://gdr.openei.org/submissions/471

Individual raw GPS data for GPS stations BRAD and BRDY (Subtask 3.5),
http://gdr.openei.org/submissions/467

Daily estimates of position for GPS stations BRAD & BRDY (Subtask 3.5),
http://gdr.openei.org/submissions/466

Metadata for active DTS at Guelph (Subtask 3.7),
http://gdr.openei.org/submissions/468

Metadata for Boise Hydro-geophysical Research (Subtask 3.8),
http://gdr.openei.org/submissions/470
Key Idea: Highly permeable conduits along faults channel fluids from shallow aquifers to the deep geothermal reservoir tapped by the production wells.

- Hypothesis 1: Injecting cooled water \rightarrow thermal contraction
- Hypothesis 2: Changes in pressure and saturation \rightarrow poroelastic compaction
- Hypothesis 3: Dissolution in water flowing through fractures removes minerals from rock
Milestone Summary Table

milestones (Mst.)
quartets (Q)
months (M)
from 2014/10/01

<table>
<thead>
<tr>
<th>Task or Milestone Number</th>
<th>Description</th>
<th>Start Month</th>
<th>End Month</th>
<th>Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0 Coordination</td>
<td>Budget Period 1 = Year 1 (FY '15)</td>
<td>1</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>2.0 Kickoff Meeting</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0 Analysis of Existing Data</td>
<td>1</td>
<td>11</td>
<td>Q1</td>
<td></td>
</tr>
<tr>
<td>Mst. 3.1 Metadata for existing data sets submitted to GDR</td>
<td>1</td>
<td>Q2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mst. 3.2 Existing data sets submitted to GDR in unprocessed format</td>
<td>1</td>
<td>Q3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mst. 3.3 Existing data sets submitted to GDR in analyzed format</td>
<td>1</td>
<td>Q3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0 Design Deployment at Brady</td>
<td>1</td>
<td>11</td>
<td>Q4</td>
<td></td>
</tr>
<tr>
<td>Mst. 4.1 Uncertainty analysis</td>
<td>1</td>
<td>Q4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0 Stage Gate Review #1</td>
<td>12</td>
<td>12</td>
<td>Q4</td>
<td></td>
</tr>
<tr>
<td>Go/No-Go #1 Resolution expected for Phase II will meet minimum requirement</td>
<td>12</td>
<td>Q4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phase II		13	23	Q5
6.0 Deployment of Integrated Technology in Brady Natural Lab.		13	23	Q5
Mst. 6.1 Plan (personnel, dates, equipment) for deployment drafted	13	Q5		
Mst. 6.2 Plan for deployment confirmed	13	Q5		
Mst. 6.3 Metadata for deployment data sets submitted to GDR	13	Q5		
Mst. 6.4 Data from deployment submitted to GDR in unprocessed format	13	Q5		
7.0 Stage Gate Review #2	24	24	Q8	
Go/No-Go #2 Data were successfully collected according to plan	24	Q8		

Phase II cont’d		25	30	Q9
8.0 Analysis of Data Collected During Deployment		25	30	Q9
Mst. 8.1 Preliminary data analysis	25	Q9		
Mst. 8.2 Final data analysis completed and data sets submitted to GDR	25	Q9		
9.0 Inverse Modeling	30	35	Q11	
Mst. 9.1 Preliminary inverse modeling	30	Q11		
Mst. 9.2 Final inverse modeling	30	Q11		
10.0 Final Review	36	36	Q12	
Mst. 10.1 Final report	36	Q12		