

Energy Efficiency & Renewable Energy

Environmentally Friendly Economical Sequestration of Rare Earth Metals from Geothermal Waters

Project Officer: Holly Thomas Total Project Funding: \$715K May 13, 2015

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Dean P. Stull, Ph.D., Pl & Presenter

Tusaar, Inc.

Low Temperature Track

The Problem

- Commercial extraction of lanthanide and other critical and valuable elements from geothermal process waters
 - REE are critically important in the US
 - REE demand is rising
 - US is dependent upon foreign sources
 - Few viable domestic supplies/options exist

The Project

- Environmentally Friendly Economical Sequestration of Rare Earth Metals from Geothermal Waters
 - Geothermal waters are an available and potential REE source
 - Geothermal waters offer a range of technical challenges

Relevance/Impact of Research

Energy Efficiency & Renewable Energy

The Target

- Demonstrate that a novel media can effectively absorb REE from Geothermal Waters
- REE can be recovered and the media regenerated
- Model a commercial process

The Future

- Technical Advancement
 - Larger scale pilot demonstration plant
 - Commercial feasibility analysis
 - Commercial operation
- Commercial Success
 - Cost effective production of REE from existing and future geothermal power plants

The Technical Strategy

- An iterative experimental design a matrix format
 - Identify and prioritize operating variables
 - Identify and model geothermal brines
 - Screen media for metal removal
- Use a rapid through-put bench scale isotherm test
- Explore range of operating conditions
- Select materials/conditions for confirmatory column studies
- Optimize laboratory conditions
- Advance best case with authentic geothermal brines
- Use optimized data to complete process design at scale
- Complete techno-economic analysis

The Technical Approach - Challenges

- Media
 - Application under high temperature and salt concentration
 - Absorptive and regenerative capacity
 - Process design constraints
 - Selective absorption of REEs
 - Absolute and relative basis
 - Salt concentration 1-20%
 - REE concentrations 10-200 ppb
 - Selectivity for individual REE
- Analytical
 - Complex matrix
 - Low concentrations

Scientific/Technical Approach

The Technical Approach - Unplanned challenges & solution

- Analytical throughput
 - Cross contamination sporadic intra run variance SOP changes
 - Equipment downtime Improved maintenance
- Brine formulation
 - Quality of individual components –impurities determined, quantitated and formula adjustments
 - pH variability related to REE doping little buffer capacity, adjust formulation and broaden target ranges
- Experimental design for high through put screening
 - Volume requirements related to media mass adapt test model
 - Modeling column efficiency following screening under investigation
 - Media impact on target brine pH under investigation

Accomplishments, Results and Progress

Energy Efficiency & Renewable Energy

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
1.2.1 S election & formulation of two geothermal model brines with solution stability	Complete - Brine 1 & 2 defined, prepared and evaluated.	December 31, 2014
1.2.2 Establish sorption and recovery capacity goals (%wt. /wt.) for Tusaar proprietary absorptive media for removal of target REE/metals from model geothermal brines.	Capacity goals established for initial target media – 0.1 to 0.4% wt/wt initial goal for Media 1 & 2. Exploratory media will likely exceed these levels Recovery after sorption from model brines under investigation.	March 31, 2015
1.3.1 Completion of an initial experimental design focused on the top three variables/parameters	Complete – target parameters are pH, temperature, REE concentration	March 31, 2015
GO/NO-GO Decision Point Demonstration of metal recovery and stripping from media coupled with reasonable operating parameters and life cycle parameters.	Program mid point decision, in process – due July 31, 2015	

U.S. DEPARTMENT OF

Technical Accomplishments - overview

- Selected and formulated model brines
- Completed the foundational experiments to investigate media performance work
 - Manufactured, qualified and reserved large lots of media
 - Developed REE qualification method for media
 - Expanded media qualification to include REE capacity test
- REE absorption from a model brines experimentally confirmed
- Media metal recovery and media regeneration under investigation – early results positive

Technical Accomplishments

- Select Results
 - Test matrix designed

Master Matrix	(
	REE Concentration ¹	Brine pH ²	lsotherm temperature ³
Media 1			
Media 2			

REE Concentration			
REE Conc.	Media 1	Media 2	
100 ppb			
1 ppm			
10 ppm			

Brine pH		
pH ¹	Media 1	Media 2
2.5		
3		
3.5		
4		
4.5		
5		
5.5		
6		
6.5		
7		

	Isotherm Tem	perature
	Media 1	Media 2
Ambient		
40 [°] C		
50 [°] C		
60 [°] C		

U.S. DEPARTMENT OF

ENERGY

Technical Accomplishments - Select Results

- Proprietary media selected
 - Wide pH working range, >200 regenerations, good REE capacity
 - · Analytical requirements established and implemented
- Two geothermal brines modeled from available data
 - Brine 1 pH 5.5, TDS >100,000
 - Brine 2 pH 3.2, TDS <5000
- Experimental plan uses model brines at native pH doped with REE standard mix at 38ppm total
 - ~1000 times native levels to speed development work
- pH and temperature were selected as initial critical variables
 - Plant operating parameters and brine compositions

Technical Accomplishments - Select results

- Analytical qualification
 - Matrix issues over dynamic range of salt & REE concentration
 - Solution using ICP MS instrument
 - Dilute samples for analysis with synthetic matching brines
 - MDL for REE 0.02 μ g/L minor inter element variation
 - Working solution range 1-10ppb
 - REE concentration for native brines with REE below 10ppb

ENERGY Energy Efficiency & Renewable Energy

Technical Accomplishments - Select results

- Media 1 & 2 Europium Challenge Qualification
 - Test solution @ 500ppm Eu
 - ~1.76% wt/wt isotherm capacity
 - >4% wt/wt column capacity (estimated)
- Media performance in brine
 - 36ppm total mixed REE, 21°C, 90 minute mix time
 - Best case sequestration 98% of available REE
 - Media capacity 0.1 to 0.4 % wt/wt
 - Brine 1 & 2 produced similar results

Milestone or Go/No-Go	Status & Expected Completion Date
GO/NO-GO Decision Point Successful demonstration of metal recovery derived from the combined experimental determinations of media capacity and recovery efficiency for at least one metal of value in the model brine.	July 31, 2015 Work is in process
Milestone for Task 3: Complete evaluation of results and a preliminary economic analysis	October 31, 2015 Under review as work proceeds
Milestone for Task 4: Completion of the Techno-Economic Analysis	February 28, 2016 Conceptual
Milestone for Task 5: Final Report and Complete Data Upload	March 31, 2016

Next 9 months Focus on:

- Perfect the laboratory model for media evaluation
- Confirm column absorption performance
- Obtain and examine authentic geothermal brines
- Preliminary economic model development
 - Review world prices and trends for REE elements
 - Review capital requirements for critical elements
 - Identify critical operating parameters unit operation integration into existing geothermal energy extraction plant
- Broaden our view experimental media for absorption
- Reduce our risk Identify secondary variables for impact on future commercial application
 - Contact time, flow rates, process aids used in geothermal operations

Future Direction

- Successful completion of program
 - Partnering with industry participant(s)
 - Design and construction of pilot operation
 - Commercial feasibility from Pilot operation
 - Design and installation of commercial operation
 - Commercial operation