Guidance for Conducting Technical Analyses for 10 CFR Part 61

Christopher Grossman
Division of Decommissioning, Uranium Recovery, and Waste Programs
Office of Nuclear Material Safety and Safeguards
christopher.grossman@nrc.gov
301-415-0140

Interagency Performance and Risk Assessment Community of Practice
May 20, 2015
Objective

• Discuss the proposed revisions to the Commission’s low-level radioactive waste disposal regulations and proposed guidance
• Encourage the submittal of comments on the proposed guidance
• Answer questions and receive comments on guidance from the public
Agenda

• Overview of rulemaking
• Summary of proposed rule
• Summary of proposed guidance
Agenda - continued

• Considerations for general analyses
• Performance assessment
• Inadvertent intruder assessment
• Site stability analyses
• Protective assurance period
• Performance period analyses
• Defense-in-depth analyses
• Waste acceptance
• Performance confirmation
OVERVIEW OF RULEMAKING
Why is NRC proposing changes to 10 CFR Part 61?

- Recognize unanalyzed waste streams in original 10 CFR Part 61
- Implement Commission policy in a public process
- Make provisions generally applicable
- Address lessons learned and recommendations
Who will rulemaking affect?

<table>
<thead>
<tr>
<th>Facility</th>
<th>Waste</th>
<th>Compact Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richland, WA</td>
<td>A, B, C</td>
<td>11 Western states in 2 LLW Compacts only</td>
</tr>
<tr>
<td>Clive, UT</td>
<td>A only</td>
<td>None, all US generators OK (Compacts must approve)</td>
</tr>
<tr>
<td>Barnwell, SC</td>
<td>A, B, C</td>
<td>SC, NJ, CT only (Atlantic Compact)</td>
</tr>
<tr>
<td>Andrews Cty, Texas</td>
<td>A, B, C</td>
<td>Texas and VT (Texas Compact), Others with Compact approval</td>
</tr>
</tbody>
</table>
What is the timeline for rulemaking?

Rulemaking

Public Meetings and Comments

Develop Responses to Comments and Final Rule

Publish Final Rule

Rule Becomes Effective

Agreement States Issue Rules

March 2015

August 2015

August 2016

August 2017

August 2020

Guidance

Public Meetings and Comments

Develop Responses to Comments and Final NUREG-2175

Publish Final Guidance

Note: Dates are approximate
Public Interactions

• March 20, Phoenix, AZ
• April 28, Rockville, MD
• May 12, Austin, TX
• May 20, This Webinar
• June 2, Columbia, SC
• June 9, Richland, WA
• June 10, Salt Lake City, UT
How to Comment on Proposed Rule:

• Accepting comments 120 days from date of publication (through July 24, 2015)
• Include Docket ID NRC-2011-0012 in the subject line of your comments

• **Federal rulemaking website:** Go to http://www.regulations.gov and search for documents filed under Docket ID NRC-2011-0012
• **Mail comments to:** Secretary, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, ATTN: Rulemakings and Adjudications Staff
• **E-mail comments to:** Rulemaking.Comments@nrc.gov. If you do not receive a reply e-mail confirming that we have received your comments, contact us directly at 301-415-1677
• **Hand-deliver comments to:** 11555 Rockville Pike, Rockville, Maryland 20852, between 7:30 am and 4:15 pm Federal workdays. (Telephone 301-415-1677)
• **Fax comments to:** Secretary, U.S. Nuclear Regulatory Commission at 301-415-1101
How to Comment on Proposed Guidance:

- Accepting comments 120 days from date of publication (through July 24, 2015)
- Please include Docket ID NRC-2015-0003 in the subject line of your comments

- **Federal rulemaking web site:** Go to http://www.regulations.gov and search for documents filed under Docket ID NRC-2015-0003. Click on the comment icon and complete the web form

- **Mail comments to:** Cindy Bladey, Chief, Rules, Announcements, and Directives Branch (RADB), Office of Administration, Mail Stop: 3WFN-06-A44M, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001
How to Find Additional Information:

• Proposed rule and guidance
 – www.regulations.gov
 • Rule - Docket ID: NRC-2011-0012
 • Guidance - Docket ID: NRC-2015-0003

• Related information
QUESTIONS ON RULEMAKING PROCESS?
OVERVIEW OF CHANGES TO 10 CFR PART 61
What is in the Proposed Rule?

The NRC is proposing to amend its regulations that govern low-level radioactive waste (LLRW) disposal facilities to require:

- New and revised site-specific technical analyses to demonstrate that the performance objectives are met
- To permit the development of site-specific criteria for LLRW acceptance based on the results of these analyses
- To facilitate implementation and to better align the requirements with current health and safety standards
- To ensure licensing decisions are based on defense-in-depth protections

This proposed rule would affect LLRW disposal licensees or license applicants that are regulated by the NRC or the Agreement States
Proposed Modifications to Rule

- Performance objectives (POs) 3 tiers
 - Compliance: 1,000 yrs. post-closure
 - Protective Assurance: 1,000-10,000 yrs.
 - Performance: 10,000 yrs.+

- Requirements of technical analyses
- Explicit demonstration of defense-in-depth
- Waste acceptance requirements

‡ w/ goal of 500 mrem/yr or a level reasonably achievable based on technological and economic considerations
QUESTIONS ON PROPOSED RULE?
OVERVIEW OF PROPOSED GUIDANCE (NUREG-2175)
Purpose

• Provides guidance on conducting technical analyses to demonstrate compliance with the performance objectives in 10 CFR Part 61:
 – Performance assessment (PA)
 – Inadvertent Intruder assessment (IIA)
 – Assessment of stability of disposal site
 – Protective assurance period analyses
 – Performance period analyses
 – Defense-in-depth analyses

• Provides guidance for waste acceptance
Contents

1. Introduction
2. General technical analyses considerations
3. Performance assessment
4. Inadvertent intrusion
5. Site stability analyses
6. Protective assurance period analyses
7. Performance period analyses
8. Defense-in-depth analyses
9. Waste acceptance
10. Performance confirmation
11. Use of other NRC guidance documents
12. References
13. Glossary
 • Appendices
Additional Content

• Emphasis on risk-informed approaches, flexibility
• Relationship to other NRC guidance
• Examples, tables, figures
• Appendices (e.g. hazard maps, features, events, and processes [FEPs])
How to Find Guidance:

- Regulations.gov
 - www.regulations.gov
 - Docket ID: NRC-2015-0003

- NRC’s ADAMS
 - www.nrc.gov/reading-rm/adams.html
 - Accession No. ML14357A072

- NRC’s LLRW disposal webpage
Overview

• Supplements existing guidance
 – Provides crosswalk to other NRC guidance documents for background information

NUREG-1573
PA Methodology for LLRW Facilities

NUREG-1200
Standard Review Plan for LLRW License Application

NUREG-1757
Decommissioning Guidance

NUREG-1854
NRC Staff Guidance for DOE Waste Determinations

BTP on Concentration Averaging and Encapsulation

Technical Analyses Guidance

BTP: Branch Technical Position
DOE: U.S. Dept. of Energy
LLRW: Low-Level Radioactive Waste
CONSIDERATIONS FOR GENERAL TECHNICAL ANALYSES
Scope

- Guidance for preparing/reviewing any of the technical analyses
- Describes assessment process
- Acceptable dosimetry methodologies
 - Corresponding organ dose weighting and dose conversion factors

ACMs: Alternative Conceptual Models
PA: Performance Assessment
QA: Quality Assurance
Review Considerations

• Graded approach
• Reasonable assurance
• Data Adequacy
• Uncertainty
 – Scenario
 – Model
 – Parameter
• Model support
General Analyses Considerations

Seeking feedback on:

• Adequacy of guidance to develop technical analyses that meet 61.13 requirements
• Clarity of assessment process
• Guidance on scenario development
Performance Assessment

• PA is not a new topic – renaming of technical analyses
• Proposed modifications modernize the technical analyses requirements
• New requirements in 61.13(a):
 ➢ Scope (features, events, and processes)
 ➢ Uncertainty and variability
 ➢ Model support
• Requirement to update the PA at closure
• Modified siting characteristics consistent with disposal of long-lived waste
Approach

- Supplements NUREG-1573
- Emphasis on long-lived radionuclides
- Discusses
 - Source term
 - Transport
 - Biosphere
Performance Assessment

Seeking feedback on:
• Adequacy of guidance to demonstrate requirements at 10 CFR 61.13(a)
• Clarity of guidance
• Guidance vs. regulation
INADVERTENT INTRUSION
Inadvertent Intrusion

- Intrusion possible, though unlikely
- Assist regulatory decision-making given disposal is in near-surface
- Separate PO because controls required, but cannot be solely relied upon

Figure 4-1 Technical Analyses Required to Demonstrate Compliance with the 10 CFR Part 61 Performance Objective for the Protection of Individuals from Inadvertent Intrusion
Inadvertent Intruder Assessment

- Inadvertent intruder assessment (IIA) is a new analysis

- New requirements in 61.13(b):
 - Scope
 - Intruder barriers
 - Uncertainty and variability

- Performance objective in 61.42

- Requirement to update IIA at closure
Inadvertent Intruder
Assessment Overview

- Stylized calculation
- Receptor scenarios are key component to consider uncertainties
- Annual dose limit of 500 mrem for compliance periods

Figure 4-2 Example of an Inadvertent Intruder Assessment Process Required Per 10 CFR 61.42
Intruder Receptor Scenarios

- Normal activities or other reasonably foreseeable pursuits consistent with expected activities in and around the site at the time of closure
- Flexibility for generic or site-specific intruder receptor scenarios

Table 4-1 Comparison and Description of Intruder Receptor Scenario Terms Used in this Guidance

<table>
<thead>
<tr>
<th>Types of Scenarios</th>
<th>Evaluation Purpose</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plausible</td>
<td>Generic</td>
<td>All can be used to demonstrate compliance with the inadvertent intruder performance objective. The scenarios used to inform the waste classification criteria at 10 CFR 81.55 that are consistent with normal activities including agriculture, dwelling construction, resource exploration or exploitation.</td>
</tr>
<tr>
<td>Site-Specific</td>
<td></td>
<td>A scenario developed, using site information, either from scratch or by modifying a generic scenario that is consistent with activities in and around the disposal site at the time of closure.</td>
</tr>
<tr>
<td>Reasonably foreseeable</td>
<td>Reasonably foreseeable scenarios are based on normal activities or other pursuits that are consistent with activities in and around the disposal site at the time of closure. Normal activities include agriculture, dwelling construction, resource exploration or exploitation (e.g., well drilling). The NRC staff continues to believe the generic receptor scenarios associated with normal activities are typically plausible assuming the loss of institutional controls and the loss or significant degradation of the capabilities of intruder barriers. The NRC staff also continues to view the generic receptor scenarios as reasonably bounding over long timeframes, given the uncertainty in estimating future human activities over long time periods. However, licensees can also rely on site-specific scenarios that are consistent with activities in and around the site at the time of closure to limit speculation about future human activity.</td>
<td></td>
</tr>
<tr>
<td>Less Likely but Plausible</td>
<td>Not analyzed for compliance, but may be used to risk-inform the decision.</td>
<td>Intruder activities that are plausible, assuming the loss of institutional controls, based on the capabilities of intruder barriers, site characteristics, and historical uses, but are not reasonably foreseeable considering normal activities or other pursuits that are different than activities in and around the site at the time of closure. These scenarios are usually site-specific.</td>
</tr>
<tr>
<td>Implausible</td>
<td>No analysis required.</td>
<td>Assuming the loss of institutional controls, intruder activities that could not occur because of persistent physical limitations of the site.</td>
</tr>
</tbody>
</table>
Inadvertent Intruder Assessment

Seeking feedback on:

• Adequacy of guidance to demonstrate requirements in 10 CFR 61.13(b)
• Clarity of guidance
• Guidance vs. regulation
Site Stability

- Early challenges arose from site stability issues – mostly water
- Examine active natural processes
- Reasonable assurance that there will not be a need for ongoing active maintenance
- Stability of the disposal site for compliance and protective assurance periods
Site Stability Analyses

- Site stability
 - Waste
 - Disposal site
 - Surrounding environment

- Guidance focuses on:
 - Disruptive processes
 - Technical assessment
 - Engineered barriers

- Generally, demonstrated in context of meeting 10 CFR 61.41 and 61.42
Disruptive Processes

• Reasonably foreseeable (~10%+ likelihood over time period)
• Consistent with waste
• Processes
 🔴 Natural
 🔴 Anthropogenic – intruder
 🔵 Subsidence/settlement
Technical Assessment

• Site description
• Screen
 – Radiological risk
 – Process and event
• Define scope
• Characterize information
• Perform assessment
• Integrate
• Iterate, as necessary
• Model support

a. Design-Based:
 i. Define the design objectives.
 ii. Develop or select the design.
 iii. Document and provide the basis for assumptions.
 iv. Characterize or parameterize the design.
 v. Assess the expected performance of the design.
 vi. Provide support for the design.
 vii. Iterate, if necessary.

b. Model-Based:
 i. Define the model objectives.
 ii. Develop or select the conceptual model.
 iii. Document and provide the basis for assumptions.
 iv. Develop the numerical model.
 v. Parameterize the model.
 vi. Calibrate the model.
 vii. Verify the model.
 viii. Characterize uncertainty.
 ix. Provide model support.
 x. Iterate, if necessary.
Engineered Barriers

Steps:
• Describe barriers
• Provide technical basis
• Describe uncertainty
• Demonstrate suitability of numerical models
• Perform sensitivity analyses
• Provide model support
• Provide quality assurance/quality control
Site Stability Analyses

Seeking feedback on:

• Adequacy of guidance to demonstrate requirements at 61.13(d) are met
• Clarity of guidance
• Guidance vs. regulation
PROTECTIVE ASSURANCE
PERIOD ANALYSES
Protective Assurance Period

- Second tier of the analyses timeframe (1,000-10,000 years)
- Required for all types of low-level waste
- Proposed as an optimization type process, rather than comparison to a dose limit
- Goal → minimize doses
- Annual dose below 500 mrem or level reasonably achievable
 - Technical considerations
 - Economic considerations
Protective Assurance Period

- Simplest approach: extend the PA and IIA
- Approach in guidance:

High risk = High effort
Low risk = Low effort
Protective Assurance Analyses

Seeking feedback on:

- Adequacy of guidance to demonstrate 10 CFR 61.41(b), 61.42(b), and 61.44(b) are met
- Clarity of guidance
- Guidance vs. regulation
PERFORMANCE PERIOD ANALYSES
Performance Period

- Applicable to times after 10,000 years
- Applies only if sufficient waste is present (Table A)
- Concentrations based on disposal site average using sum of fractions approach
- Minimize impacts to the extent reasonably achievable
- Requirements for analyses in 61.13(e)
 - Assess how the disposal site limits long-term impacts
 - Identify design features and site characteristics
Performance Period

Table A - Average Concentrations of Long-lived Radionuclides Requiring Performance Period Analyses

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Concentration (Ci/m³)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-14</td>
<td>0.8</td>
</tr>
<tr>
<td>C-14 in activated metal</td>
<td>8</td>
</tr>
<tr>
<td>Ni-59 in activated metal</td>
<td>22</td>
</tr>
<tr>
<td>Nb-94 in activated metal</td>
<td>0.02</td>
</tr>
<tr>
<td>Tc-99</td>
<td>0.3</td>
</tr>
<tr>
<td>I-129</td>
<td>0.008</td>
</tr>
<tr>
<td>Long-lived alpha-emitting nuclides², ³</td>
<td>10</td>
</tr>
<tr>
<td>Pu-241³</td>
<td>350</td>
</tr>
<tr>
<td>Cm-242³</td>
<td>2,000</td>
</tr>
</tbody>
</table>

¹ Values derived from § 61.55 Class A limits.
² Includes alpha-emitting transuranic nuclides as well as other long-lived alpha-emitting nuclides.
³ Units are nanocuries per gram.
Performance Period Approach

Figure 7-1 Recommended Approach to Conducting Performance Period Analysis
Performance Period Analyses

Seeking feedback on:

- Adequacy of the approach to the performance period analyses
- Averaging approach to concentrations
- Adequacy and clarity of guidance
- Guidance vs. regulation
DEFENSE-IN-DEPTH ANALYSES
• Proposed rule includes discussion of safety case
• Explains how the combination of defense-in-depth (DiD) and PA (i.e., safety case) should be used to support the licensing decision
Defense-in-Depth

Defense-in-Depth:
The use of multiple, independent, and redundant layers of defense so that no single layer, no matter how robust, is exclusively relied upon for safety.

- Multiple layers
- Independent layers
- Redundant layers
- Safety margin
- Risk informed

Figure 8-2 Land Disposal Facility Lifecycle and Timeframes for Defense-in-Depth Layers (Duration of lifecycle timeframes are not to scale. Dark blue timeframes are considered the post-closure period.)
Defense-in-Depth Analyses

- Identify DiD protections
- Describe safety functions
- Demonstrate safety margin
 - Varies over lifecycle and risks
 - Relative to POs
 - Uncertainty (e.g., less likely, but plausible scenarios)
- Recommended approach: rely on results of other analyses
Defense-in-Depth Analyses

Seeking feedback on:

• Adequacy of guidance for demonstrating DiD
• Clarity of guidance
• Guidance vs. regulation
WASTE ACCEPTANCE
Waste Acceptance

- New requirements for developing waste acceptance criteria (WAC) using either:
 - 61.55 waste classification system, or
 - Site-specific WAC
- New 61.58 focuses on three areas:
 - WAC
 - Waste characterization
 - Waste certification
• Criteria established from:
 – Waste classification tables
 – Results of technical analyses

• Demonstrate POs
 – Focus on significant radionuclides and wasteform characteristics and container specifications
 – Combination of concentration and inventory limits
Waste Classification

Figure 9-4 Waste Classification and Segregation for Waste Classes
Characterization

- Acceptable methods
 - Direct measurement
 - Indirect methods
 - Materials accountability
 - Characterization by source
 - Scaling factors
- Existing NRC guidance (i.e., BTPs)
- Inventory, wasteforms, and containers
- Graded approach
- Acceptable uncertainty
Certification Program

Describes:

• Responsibilities
• Procedures
• Documentation
• Audits
• Maintenance
• Waste profiles
 – Prior to disposal
 – Summarize waste form and characterization data
• Quality assurance/quality control
• Certification maintenance procedures
Waste Acceptance

Seeking feedback on:

• Adequacy of guidance to demonstrate waste acceptance requirements are met
• Clarity of guidance
• Guidance vs. regulation
Performance Confirmation

- Not required, but supported by regulation
- Elements:
 - Verification site conditions, barriers, DiD within limits assumed
 - Monitoring of disposal site performance
 - Verification of safety case
 - During operations and institutional control period

<table>
<thead>
<tr>
<th>Section</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 CFR 61.7(c)(3)</td>
<td>Post-closure monitoring and maintenance</td>
</tr>
<tr>
<td>10 CFR 61.12(g)</td>
<td>A description of the disposal site closure plan, including those features that facilitate closure and eliminate the need for maintenance</td>
</tr>
<tr>
<td>10 CFR 61.28</td>
<td>Contents of application for closure</td>
</tr>
<tr>
<td>10 CFR 61.52</td>
<td>Land disposal facility operation and disposal site closure</td>
</tr>
<tr>
<td>10 CFR 61.53(c)</td>
<td>Environmental monitoring during construction and operation</td>
</tr>
<tr>
<td>10 CFR 61.53(d)</td>
<td>Environmental monitoring, post operational surveillance</td>
</tr>
</tbody>
</table>
Performance Confirmation

Seeking feedback on:

- Adequacy of guidance
- Clarity of guidance
- Guidance vs. regulation
Site Suitability Hazard Maps

Figure B-3. Areas of potential flooding that may require additional site characterization and analysis
FEPs Resources

• Generic FEPs lists for LLRW disposal – Appendix C
 – Starter list – Table C-1
 • Core list of FEPs essential for performance assessment
 – Comprehensive lists – Table C-9 and Table C-10
 • Provides example FEPs
 • Provides numerous reference lists for FEPs
 • Cites FEPs as “long-term” where they are relevant for performance period analyses
 – Could be used as starting point for project-specific FEPs lists

• Provides examples of identifying, categorizing, and screening of FEPs
 – Hanford, SRS, and Clive, Utah
Additional Approaches to Scenario Analysis

- Event tree analyses
- Logic diagrams
- Interaction matrices
- Influence diagrams
- Judgmental approaches

Figure D-3 Example of an interaction matrix for a central scenario including the bathtub effect (IAEA, 2004)
Site Stability Examples

- Model-based approach:
 - West Valley erosion modeling
- Design-based approach:
 - Moab UT uranium mill tailings site
Contributors

David Esh
Christopher Grossman
Priya Yadav
Hans Arlt
Cynthia Barr
See our Low-Level Radioactive Waste Disposal (Site-Specific Analysis Rulemaking) website:
http://www.nrc.gov/about-nrc/regulatory/rulemaking/potential-rulemaking/uw-streams.html

Contacts (Rule):
Stephen Dembek
stephen.dembek@nrc.gov
(301) 415-2342

(Guidance)
Priya Yadav
priya.yadav@nrc.gov
(301) 415-6667

Gary Comfort
gary.comfort@nrc.gov
(301) 415-8106