High Power Laser Tool & System for Unique Geothermal Well Completions

Design, build, and field test a high power laser tool and system

Enables 10x+ control to orient and engineer wellbore-formation connectivity in near wellbore region where wellbore stress, regional in-situ stress, perforations / other geometries, choice of fluid properties, fluid rates, the pumping schedule and other design properties, strongly influence heat extraction potential

Proof of Concept System Overview

Surface Equipment Foro Surface Package Conveyance **Downhole Tool &** Anchor

FORGY

Prelim Downhole Tests		
Jul / Sep 2013 (~9 mo)	2014-2015 (~15 mo)	■ 2015-2016 (~6 mo)
Deliverable: Front End Engineering Design with supporting lab tests and laser hardware builds / tests	Deliverable: Laboratory surface test of tool and system & detailed field test plan, prelim downhole tests	Deliverable: Successful unique geothermal completion operation at predetermined geometries and depth

Technical Barriers & Targets

Target to perform oriented slot operation in 7" casing with Initial proof of concept stage operating parameters:

- 6,000 ft
- 3,000 psi
- 150C
- Achieving target requires "world first" developments:

ounding Formation

8.5" Hole with 7" OD Casing

- > 500 ft downhole environment
- Circumferential cut with penetration
- Right angle operation at <10" tool diameter
- Optics package designed for high pressure

Proof of Concept Tool Overview

Packaging of fiber optic in cable, installation of cable in conveyance structure, and mechanical stresses caused by hanging weight and tool operation

Challenge: High Power Connector

Incorporating updated hardware versions into the tool design while using packaged fiber cable to deliver not only fiber but also telemetry and power for motor

- Deeper depths / umbilicals
- High pressure downhole environments
- Mobile splicing
- Downhole high power laser downhole connector
- Onshore workover-style supporting surface spread

Technical Accomplishments

World first design of a high power laser cutting tool for well completion applications

World first tests of high power laser downhole

World first 12,000 ft packaged high power fiber cable: fiber optic, break detection, 3-wall stainless

World first installation of packaged high power fiber cable & conductor into 2,000 ft coiled tubing

World first high power laser hardware (optics package & fiber connector) tested to >5,000 psi

Challenge: Preliminary Field Tests

Challenge: Windows & Seals

Achieving reliable, consistent materials and glass-tomeal hermetic seals that meet mechanical requirements to 3,000 psi and beyond

Challenge: Nozzle Flow Path

Conclusions & Lookahead

Prelim success on interim technical milestones but true value will not be apparent until field testing data

Foro Energy has moved aggressively to conduct earlier and more frequent field testing to maximize the probability of a successful unique geothermal completion operation in a dedicated test well

Executing on significant lessons learned in improving conveyance reliability, debris management, operational procedures & ruggedizing surface system

Dedicated test well created through re-entry of plugged and abandoned well near Galveston, TX to allow rapid iteration & downhole / conveyance tests

Achieving proper flow around High Power Optics Package, Prism Assembly, and Nozzle as supported by computational fluid dynamics

Successful proof of concept R&D for transitioning to water-based jet and nozzle

Foro Energy, Inc. – Littleton, CO & Houston, TX | Principal Investigator: Dr. Joel Moxley@foroenergy.com | Project Start and End Date: September 2013 – March 2016