How well does geophysical data improve the outcome of our geothermal prospecting decisions?

How much is this information worth ($)?

How can we quantify the “past performance” of MT data to predict geothermal production?

Role of geophysical data in geothermal prospecting

- Darajat is a volcanic geothermal field, with total production capacity of 271 MW [1].
- Clay cap = high electrical conductivity feature in volcanic geothermal settings; can be indicative of geochemical alteration above the resource [2].
- MT data were collected to interpret the extension of the clay cap beyond the first development area and inverted to an electrical conductivity model [1].
- The conductivity model is used to determine relationships between the conductance & the overlying steam flow rates.

Value of Information

Does the information improve (on average) our chances of drilling economic wells?

Value of Information (VOI) Analysis Using Field Data:

Accounting for Multiple Interpretations & Determining New Drilling Locations

Whitney Trainor-Guitton, G. Michael Hoversten, Gregg Nordquist, Robert Mellors & Rindu Grahabhak Intani

1. Lawrence Livermore National Laboratory, Livermore, CA, wtrainor@gmail.com
2. Chevron Energy Technology Company, San Ramon, CA, ©Chevron Geothermal Power Indonesia, Jakarta, Indonesia

Deduce trends between conductance (g) & steam flow (θ)

1. Define 2 clay caps with 2 conductivity cutoffs (thresholds):
 - 0.12 S/m
 - Delineates thinner cap
 - 0.10 S/m
 - Delineates thicker cap

2. Determine co-located steam rates & conductance (thickness x conductivity):
 - 750 m as cutoff distance
 - Represents lower quartile ($Q1$) of distances between midpoint of feed zones and conductance voxels

Quantify probabilistic relationships between g and $θ$

- Each bar represents number (c_{ij}) of conductance voxels associated with each steam flow category
- Bayes Law to combine likelihood and prior:
 - Posterior Probability: $Pr(θ = θ_i | G = g_i)$
 - When posterior >1, conductance is more reliable in determining steam flow category

Determine next drilling campaign

- MT data has more value if probability of "dry hole" is larger, e.g. alternate prior
- The VOI imperfect, using 0.1 S/m clay cap calibration is higher when $Pr(θ > 30) = $ higher:
 - the conductance for this category has less overlap with others
- This reverses for alternate prior with higher $Pr(θ < 5)$

Observed Steam Flow Rates

Value of Information (VOI) Analysis Using Field Data:

Accounting for Multiple Interpretations & Determining New Drilling Locations

Whitney Trainor-Guitton, G. Michael Hoversten, Gregg Nordquist, Robert Mellors & Rindu Grahabhak Intani

1. Lawrence Livermore National Laboratory, Livermore, CA, wtrainor@gmail.com
2. Chevron Energy Technology Company, San Ramon, CA, ©Chevron Geothermal Power Indonesia, Jakarta, Indonesia

References

Locations of Darajat Field

Darajat is a volcanic geothermal field, with total production capacity of 271 MW [1].

Clay cap = high electrical conductivity feature in volcanic geothermal settings; can be indicative of geochemical alteration above the resource [2].

MT data were collected to interpret the extension of the clay cap beyond the first development area and inverted to an electrical conductivity model [1].

The conductivity model is used to determine relationships between the conductance & the overlying steam flow rates.