

Ultrasonic Phased Arrays and Interactive Reflectivity Tomography for Nondestructive Inspection of Injection and Production Wells in Geothermal Energy Systems

Hector J. Santos-Villalobos (PI), Yarom Polsky, Roger Kisner from Oak Ridge National Laboratory, Oak Ridge, TN
Charles Bouman from Purdue University, West Lafayette, IN

Objective

Develop a *highly integrated and optimized* ultrasonic phased array imaging system and reconstruction algorithm to provide new *wellbore characterization* capabilities that will significantly improve wellbore integrity evaluation and *near wellbore region characterization including fracture network mapping*.

- Project Start Date: Late December 2015
- Expected Benefits:
 - More detailed structural characterization of wellbore and near wellbore region
 - Improved capability for identifying wellbore integrity compromises
 - Provide critical data that can be used to improve stimulation design
 - Provide ability to measure evolution of the fracture network to support long term management of reservoir operations

Motivation

Current logging instruments

- Expedited inspection of the integrity of steel-to-grout bond; further penetration is not typically done
- Poor transverse lateral resolution (15.2 cm)
- Expert interprets sonic/ultrasonic signals/images

Techniques from other fields

- Ultrasound imaging could leverage from advances in X-ray imaging, in particular computational tomography
- Pioneering implementation of Model-Based Iterative Reconstruction (MBIR) for ultrasonic signals
- Develop reconstruction technique that can applied across applications (e.g., CO2 Storage, Oil and Gas, Geothermal, etc.) and that is adaptable to different acoustic sources

Class II wellsindustrial and municipal wastes through deep injection ORNANDA WATER PRANT WATE WATER PRODUCTION WELLS ARE NOT RESULATED BY THE UIC PROGRAM COMPRISES COMPRIS

System Performance Goals

Acoustic System

- 16-element phased array
- Broadband 100KHz central frequency
- Control system for dynamic adjustment for phased array focal laws

Reconstruction Algorithm

- MBIR reconstruction assuming acoustic propagation
- Two-dimensional reconstruction (i.e., cross-section slice)

Overall system

- Depth range of 1m or greater
- Transverse spatial and axial resolution of 10cm or greater
- Image quality superior to Synthetic Aperture Focusing Technique (SAFT) reconstructions

Model-Based Iterative Reconstruction (MBIR)

The Framework

- p(y/x) models the response of the system given an estimate of the media
- p(x) models the media
- p(y/x) and p(x) are application and system dependent

For X-Ray Computed Tomography (CT):

- First FDA approved X-ray medical
 CT iterative reconstruction technique
- Dramatic reduction in X-ray dosage
- Lung cancer screening ~80%
- Pediatric imaging 30-50%
- Superior in the presence of noise and sparse information

$\hat{x} \leftarrow \arg\max\left\{\log p(y\,|\,x) + \log p(x)\right\}$ $\hat{x} \leftarrow \arg\max\left\{\log p(y\,|\,x) + \log p(x)\right\}$ $\hat{x} - \text{Reconstructed object}$ y - Measurements from physical system

Technical Approach

Research plan:

- Development of ultrasound phased array with adaptive focal laws
- MBIR implementation for 2D reconstructions
 - Define forward models
 - Invert and discretized forward model
 - Wrap forward model in convergence algorithm
- Test of reconstruction algorithm with synthetic data
- Laboratory proof-of-concept demo
- Compare MBIR performance against state of the art SAFT

Key Accomplishments and Progress

- Requirements for transducer performance and phased array control have been developed based on the imaging goals of the project
 - System hardware performance specification developed
 - All hardware components have been received and are in the process of assembly
 - System commissioning planned for June

MBIR

- Inverted forward model assuming homogenous media, born approximation, and coherent integration
- Initial Matlab implementation of iteration algorithm
- Currently working on discretization of forward model