No Heat Spray Drying Technology

DE-EE0005774
ZoomEssence, Inc.
12/15/14 – 12/15/15

Dr. Charles Beetz, Chief Scientist, ZoomEssence, Inc.

U.S. DOE Advanced Manufacturing Office Program Review Meeting
Washington, D.C.
May 28-29, 2015

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Project Objective

• Advance research from prototype dryer to integrated pilot system for our ambient temperature spray drying technology

• Several objectives:
 • Improve emulsion formulation
 • Develop an industrialized atomizer
 • Develop a dryer control system

• Challenge is to convert liquids to powders at ambient temperature
 • First commercial market is dry flavors designed to retain attributes of the starting liquid flavor

• Traditional spray dryers operate at 200°C while our technology operates at much lower temperature causing significant reduction in drying power – opens new challenges
Technical Approach

- **Present spray dryers operate at high temperature ~200°C resulting in:**
 - Loss (evaporation) of flavor molecules
 - Oxidation and thermal alteration of flavor profile
 - Low thermal efficiency

- **Our process dries powders at low temperature resulting in:**
 - Avoiding the evaporation or distortion of flavors
 - Higher thermal efficiency
 - Significantly increased manufacturing yield

- **Low temperature approach requires change from existing practice**
 - Requires novel dryer designs for long particle residence times
 - New emulsion formulations
 - New atomization technology
Technical Approach

- Utilization of high performance computation to solve:
 - Fluid dynamics problems of dryer air flow
 - Particle drying - heat and mass transfer
 - Particle trajectories to develop new dryer designs specifically for low temperatures
Transition and Deployment

- Dry ingredients are used worldwide in industries such as pharmaceuticals, food and chemicals to name a few
 - Industries that demand superior retention of high value ingredients
 - Dry form of the ingredient is preferred

- Consumers are the predominant end user in the form of tablets, capsules, dry food ingredients such as flavors, vitamins, milk powder, fertilizer, etc.

- Current high temperature drying causes issues relating to yield, performance, solubility and stability

- Everybody cares, this a disruptive technology that delivers better products at a lower cost
 - Entire population consumes dry ingredients in various forms
Transition and Deployment

• **First commercial application is the dry flavors & food ingredients**
 - CEO of ZoomEssence was former President of a large flavor company

• **Technology is sustainable, energy efficient and green**
 - Consume 60% less energy than current process
 - Improved yield causing need to manufacture fewer pounds of product
 - Avoids air pollution by not evaporating active material
 - Consumes significantly less water
 - Capital cost of the system is significantly less
Measure of Success

- Our process will result in significant reductions in energy consumption in the spray dry industry
 - In excess of 60% less energy needed to deliver 1kg of dry flavor when compared to traditional high temperature spray dry processes

- Commercial adoption by ZoomEssence selling dry flavors and ingredients to both US & International customers

- The low temperature process is more efficient in the use of natural resources such as water, flavors, pharmaceuticals, ingredients, and chemicals – little loss of valuable actives to evaporation
Project Management & Budget

- Project is 1 year in duration

- 3 Tasks Include:
 - Improvement in Emulsion Formulation
 - Continued Atomizer Development
 - Development of a Dryer Control System

- Progress measured by specific milestones and accomplishments with prototype dryer

<table>
<thead>
<tr>
<th>Total Project Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE Investment</td>
</tr>
<tr>
<td>Cost Share</td>
</tr>
<tr>
<td>Project Total</td>
</tr>
</tbody>
</table>
Results and Accomplishments

5 months into project

Accomplishments to date:

- Measurements made to date on emulsions and dried powders have resulted in improvements in viscoelastic properties of emulsions – viscosity reduction achieved
- Results in improved atomization – particle size
- Improved drying behavior
- Improvements in thermal stability of dried powders
- New atomizer design in progress
- Companies identified for manufacturing atomizer
- Control panel functions defined, all sensor and control points identified, programming starting