Prospective Life Cycle and Technology Analysis

Advanced Manufacturing Office Peer Review

May 28, 2015

Diane J. Graziano
E. Masanet
R. Huang
M.E. Riddle

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
• Quantifying, from a life-cycle perspective, the *enabling effects* of advanced manufacturing in achieving AMO’s mission for energy savings across the economy

• Assessing net energy, emissions, and economic effects over different scales of time and space

• Providing robust early information on the drivers and potentials of advanced manufacturing, rooted in deep technical understanding of emerging applications

• Analyzing key emerging technologies and trends: vehicle lightweighting, wide band gap materials, *additive manufacturing*, natural gas to chemicals, and distributed manufacturing
Additive Manufacturing

Motivation: Resource efficiency, flexibility, and modular design of additive manufacturing could be transformative, enabling competitiveness and distributed manufacturing.

R&D challenges
- Low throughput
- Residual stresses
- Repeatability
- Surface quality
- High cost

AM industry: 29% growth in the last three years - predicted to be > 30% CAGR through 2020

Aircraft industry case study - key early adopter (12.3% of AM industry)
Additive manufacturing – model framework and methodology

Framework rooted in deep technical understanding of AM process and markets

1. Aircraft component selection
 - Factor: Material use, Geometric volume, Load, Complexity

2. Replaceable mass estimation
 - Major systems: Interior, Engine, Propulsion, Nacelle, Body

3. Cradle to gate life-cycle inventory model
 - Materials Metals: Steel, Al, Ti, Ni alloys
 - Forms: Ingot, Powders
 - Manufacturing CM process: Casting, Machining
 - AM process: SLM, EBM, DMLS
 - Transportation Mode: Road, Air, Ship, Rail

4. Fleet-wide temporal adoption
 - Availability starts at 2019-2034
 - Slow, mid and rapid adoption scenarios

5. Fleet-wide fuel consumption
 - 100kg weight reduction saves 13.4-20.0 TJ of fuel over a 30 year life of an airplane

Rigorous modeling of conventional and emerging metals manufacturing technologies

Technology adoption and stock turnover modeling
Cradle-to-gate life cycle impacts

- Resource production dominates cradle-to-gate energy consumption
- Significant *materials efficiency* gained with AM
- Energy savings potentials vary by component – highlights strategic target markets
Cradle-to-grave life cycle impacts

- Potential metal alloy savings by 2050: 4050 tonnes/year aluminum, 7600 tonnes/year titanium; and 8110 tonnes/year nickel.
- Total primary energy savings potential 70-173 million GJ/year by 2050; cumulative primary energy savings of 1.2-2.8 billion GJ through 2050.
- Most of the energy savings from reduction in use-phase fuel consumption – further lightweighting achievable with improved component design.
- Rapid adoption scenario highlights benefits of aggressive deployment and more immediate progress to overcome engineering limitations (surface roughness, residual stress, etc.).
Additive Manufacturing – Enabling Competitiveness & Distributed Manufacturing

- Consideration of benefits to production economics and competitiveness - shed light on the potential business case for AM investments
- Analysis of projected trends in technology improvement
- Uncertainty and scenario analysis to enable robust AMO assessments
Publications

Published

Under final revision

Acknowledgements

- Joe Cresko, DOE AMO
- Eric Masanet, Northwestern University
- Matthew Riddle, Argonne
- Runze Huang, Northwestern University
- Yuan Yao, Northwestern University
- Sujit Das, ORNL
- Sachin Nimbalkar, ORNL
- Josh Warren, formerly ORNL
- William Morrow, LBNL
- Arman Shehabi, LBNL
- Alberta Carpenter, NREL
- Margaret Mann, NREL