Summary of Findings – Peer Review of the FY2000 GPRA Assumptions

Report to National Renewable Energy Laboratory

March 1999

In response to TOA Number KDC-9-18631-00

Arthur D. Little, Inc. Acorn Park Cambridge, Massachusetts 02140-2390

Reference 39666

	n	
Table 1:	OTT Planning Unit Summaries	3
	OPT Planning Unit Summaries	
Table 3:	OIT Planning Unit Summaries	7
Table 4:	BTS Planning Unit Summaries	16
Table 5:	Final Submission for Planning Units	18

Introduction

The Government Performance and Results Act (GPRA) requires federal agencies to establish performance goals for their programs. Programs within the U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) develop goals through a process referred to as the GPRA data call, formerly known as the Performance Measurement and Quality Metrics data call. EERE systematically develops and confirms in an annual GPRA process and data call, credible, quantitative goals, both near term and longer-term, for the performance and impact of its programs. The goal of the EERE GPRA process is to measure, manage, and improve program performance and meet GPRA requirements for strategic planning and annual performance plans and reports.

Approach

Arthur D. Little worked with DOE staff to review the estimates and assumptions for selected Planning Units within four sectors of EERE. The review process is an interactive, iterative process between the individual Planning Unit managers and Arthur D. Little experts, in each case leading to a consensus regarding the final submissions. Arthur D. Little evaluated two primary metrics for the FY2000 data call:

- The energy and emission savings of each technology projected for the years 2000 through 2020, which depend on estimates of market penetration, cost, and performance assumptions for each technology.
- The performance measurements of each Planning Unit, which include near-term goals and milestones for the next five years designed to achieve the market penetration, cost, and performance objectives underlying the energy savings metrics.

With few exceptions, the discussions between Arthur D. Little and the Planning Units within EERE have resulted in agreement on revised program impact estimates and addition of related performance measures.

The 9 Planning Units reviewed for GPRA FY2000 include:

Office of Transportation Technology (OTT)

• Advanced Automotive Technologies

Office of Power Technologies (OPT)

- Photovoltaics
- High Temperature Superconductivity
- Hydropower

Office of Industrial Technologies (OIT)

- Glass Vision
- CFCC
- Metals Casting

Office of Building Technology and State/Community Programs (BTS)

- Residential Buildings Integration
- Commercial Buildings Integration

The majority of the Planning Units were selected based on the following criteria:

- large expected energy savings
- large program visibility
- significant variables impacting the Planning Units from last years analysis (e.g., the Presidents Million Roof Initiative in the Photovoltaic Planning Unit)
- desire to review all Planning Units every four years

The following tables summarize the results of the GPRA FY2000 analysis. In general, Arthur D. Little has seen improvement in the credibility of the GPRA information since working with DOE on this effort since 1994. Arthur D. Little has worked with the DOE staff to develop credible estimates/assumptions impacting energy saving and emission reduction estimates. Our overall findings are provided in Tables 1 through 4.

Table 5 shows the final energy savings estimates for all of the planning units for EERE. There may be some slight differences between Tables 1 through 4 and Table 5 due to revisions to estimates based on increased funding levels that occurred after the review. The final FY2000 program impact estimates may differ in some cases 2000 budget request since the revised numbers were estimated. In cases where a program did receive a FY2000 budget request increase, the revised submission served as the baseline for estimating the final program impact estimate.

Table 1: OTT Planning Unit Summaries

Total Primary Energy Displaced (Trillion BTU)						
	2000	2005	2010	2015	2020	
Preliminary Draft*	0	2	401	N/A	1,128	
Final Submission	0	32	639	1215	1,589	
Electric Vehicles R&D						
Final Submission	0	2	12	17	19	
Fuel Cell Powertrains Ra	&D					
Final Submission	0	0	27	128	246	
Hybrid Vehicle R&D						
Final Submission	0	21	270	547	712	
Advanced Light Duty He	at Engine R&D	(Advanced D	Diesel and SIDI)			
Final Submission	0	8	330	523	612	
Advanced Diesel	(0)	(0)	(220)	(328)	(383)	
SIDI	(0)	(8)	(110)	(195)	(229)	
	 (2.2x vs 2.) For other a economy (Vehicle co The fuel end fuel cells) analysis set 	.0x) were used advanced autor goals are reaso st estimates an conomy goals f are shy of the <u>u</u> eems somewha	cells as compare for the Final QM s notive technologie nable. e aggressive, but or mature hybrid v <u>altimate</u> PNGV gos at conservative rat	submission. es and vehicle c within reasonal vehicles (using al (2.2x vs 3.0x) her than overly	classes, the fu ble limits. heat engines c). Thus, the QN optimistic.	
	 overall QM appear to It would be milestones Several ac future tran DOE RESPON Agreemen 	I forecasts, and be making good e useful to expli- s. dditional advand sportation, and ISES AND ACT it was reached	I the advanced au d progress in all k citly identify more ced technologies of should be consid	tomotive techno ey areas. detailed techno could play impo ered by the OT F analytical tear owertrain vehicle	ology program blogical rtant roles for T. m on reducing	
	og a sister at	with best an -!	ne-powered hybrid	luchioles The-	o oro no	

Table 2: OPT Planning Unit Summaries

		Total Primary	Energy Displace	d (Trillion Brus)
	2000	2005	2010	2015	2020
Preliminary Draft	.18	1.07	3.89	7.76	11.74
Final Submission	.25	1.20	6.00	18	49
Final Submission	 MAJOR FINDII It was very photovoltai analysis m Spreadshe in the GPR the DOE/E The average beyond system installation module effe The O&M p Next year, sited distributions system in F 20.5% use The marke years 2010 example, is more aggre Some of the penetration due to the site based especially enhanced financing fi 	NGS FOR QM difficult to track ic GPRA number ore transparent a set data for syste CA analysis did no PRI Technology ge PV system pri stem prices are a s of larger scale iciency improven porices seem reas DOE might assu- poted application Phoenix, for exard to the analysis t penetration est of and beyond. The s around 9%, while estimates in the catalyst of the M systems will ach given the additio flexibility. Increas exibility such as erated rate of ins	the assumptions is s. Next year the p and clear m prices that were of match estimate Characterizations ces are reasonab aggressive, but ac systems, major the nents conable as do the ime that tracking s s (substations etc nple, will have a constructions etcon not substations etcon not substations etcon not substations etcon not substations etcon	that were used to program should n e originally assur- es of system prices of system prices of system prices sole for 2000. The chievable assumi- nin film and BOS capacity factor n systems are used c.). A single axis capacity factor of nservative, esper- ween 2015 and 2 vative. Beyond 2 es are recommer een reinstated. Muld be slightly mo program. By 2005 egin to justify the proved power rel conomics combir to a home mortga	o generate the nake the med were use es provided in 2005 and ng volume advances, ar dombers d for some gri flat plate PV 33% vs. the cially for the 2020, for 2010 much nded Market or aggressive 5, PV costs fo installations, iability and ned with
	 milestones Milestones the next fiv Goals shour reduction g should be five The year 2 DOE RESPONS DOE agree partial reins prices after 	needed to achie should be set in re years. uld be set to succ goals. PVMat tec tied to manufactu 002 has no mile SES AND ACTIO	DNS market penetratio Million Solar Roo	t penetration targ goals of installation the PVMat progra lds, efficiency, st on objectives. n estimates to be f budget and the	jets. ons for each o am's cost ability etc.) etter reflect the

Table 2: OPT Planning Unit Summaries (continued)

		Total Primary Energy Displaced (Trillion Btus)					
	2000	2005	2010	2015	2020		
Preliminary Draft	0.0	0.01	0.16	1.75	8.04		
Final Submission	0.0	0.0	0.13	1.79	8.51		
Planning Unit	 0.0 0.0 0.13 1.79 8.51 MAJOR FINDINGS FOR QM The timeline between prototype demonstration and market penetration appears to be aggressive. The first year of market introduction was pushed backed 2 to 4 years. The market adoption rates for HTS technologies appear to be conservative and were accelerated. These two effects tend to offset each other and the overall numbers are similar to the DOE preliminary draft. MAJOR FINDINGS FOR PM The link between PM and the program goals need to be strengthened. The goals include both increases in current carrying capacity as well as cost reductions for HTS technologies is segmented along four markets: moto generators, transformers, and cables. The milestones mention only achievements with motors and cables. The milestones and transformers before these technologies are ready for commercial introduction and adoption. Partnering with the private sector is projected to be more important in the years, both in terms of funding levels and number of partners. PM should therefore reflect the increasing importance of private partnerships. DOE and ADL agreed to delay the first year of market penetration for HTS technologies. DOE and ADL agreed to more aggressive market adoption scenarios. 						
Hydropower		-		d (Trillion Btus)			
Hydropower	2000	2005	2010	2015	2020		
		110	229	293 148	303		
Hydropower Preliminary Draft Final Submission	36	119 25	80				
Hydropower			229		183		

Planning Unit	
Hydropower (continued	0
	MAJOR FINDINGS FOR QM (continued)
	 The numbers proposed by DOE represent the technical market potential for the advanced turbine program where the turbine can meet the technical requirement of the sites. An analysis needs to be conducted to assess the economic viability and the potential rate of adoption of the advanced turbine. The adoption rates of the new turbine are aggressive for all market segments and should be scaled back. New hydropower development potential is diminishing relative to past trends. The DOE preliminary numbers for new capacity additions are scaled back to reflect fewer new capacity developments and slower market adoption of the advanced turbine.
	MAJOR FINDINGS FOR PM
	• PM data is extremely limited and concentrates on the timeline of model testing and development. There is no mention of technical achievements of the model such as the amount of fish mortality and dissolved oxygen in the water. The program should add technical milestones for program activities that will help to reduce fish mortality or improve dissolved oxygen concentrations.
	 The program goal includes collaborations and increasing financial participation from private industries. The PM data should reflect the increasing importance of private partnership especially in the out years.
	DOE RESPONSES AND ACTIONS
	 DOE and ADL agreed to modify the projections for new capacity additions. DOE and ADL agreed to modify the rate of technology adoption. DOE adjusted the preliminary draft numbers for the GPRA review. These estimates may now not agree with hydropower numbers submitted for other purposes.

Table 2: OPT Planning Unit Summaries (continued)

Table 3: OIT Planning Unit Summaries

		Total Primary	Energy Displace	d (Trillion Btus)	
	2000	2005	2010	2015	2020
Preliminary Draft	-	22 (2.8)	40 (6.2)	53 (12.3)	
-	-	. ,	40 (6.2)		
Preliminary Draft Final Submission	Figures in parentit the glass products GENERAL FINI • Eight of the reviewed. • Savings pro- energy use • Analysis an submission based on si • Though sig (apparently errors almo submission • Potential ov savings pro- savings from 90% left to combustion not reviewed believe that limitations f • PM milesto We strongly to judge wh assumed in milestones information facilitate co	22 (2.8) 23 (2.8) Deses are included meses are included s DINGS e most significant ojected from thes in the glass indu- in the year 2020 of assumptions f were not well du ubsequent discu- nificant errors w in transcription ost completely ca almost equals t verlap between v ojected will be ac m the first technology-related will likely off-s to the approach c for the GPRA an nes and goals, as w be included in the number of the benefits' pro- and goals, as w be included in the number of the server of the and goals, as w be included in the number of the server of the and goals of the number of the server of the and goals of the server of the server of the and goals of the server of the server of the and goals of the server of the server of the server of the and goals of the server of the server of the server of the and goals of the server of the s	40 (6.2) 40 (6.2) in the totals but are to projects in the G se eight projects in ustry by the year 3 or the QM project bocumented, but to ssions with the D ere made in the co of the assumption inceled each othe he original submi various projects with the original submi various projects with hieved if all proje blogy are 10%, th is particularly tru ted programs. He et this double-cou hosen is a reasor alysis. There not clearly de at they be include progress will be r objections. We rece ell as go-no-go de ne templates duri o evaluation and r	53 (12.3) 56 (12.3) e attributable to end allass Vision plann range from about 2005 to about 20 tions submitted in urned out to be re OE program mar calculation of the l his to the spreads er out, so that the ssion. fill probably mear cts are successfu e second techno e for the glass m powever, savings f unting to some ex hable one, given the effined for each of ed next year, as it nade to justify the commend that the ecision points and ng proposal evalu- management.	65 (20.2) 73 (20.2) d-use benefits of and the benefits of a the benefits of the initial benefits heet), the final that not all the logy has only elter and from projects the practical the projects. is impossible the projects. is impossible the benefits the projects.
	have led to of 1000 too Btu/year, i.e current tech numbers be	estimated energy low. The propose e. 20 billion Btu/ nnology is claime e changed accor	istic. However, a gy usage numbers sal claims the fue year per plant. Ho ed as 16 million B dingly. DOE agre	s that are approx I usage of 30 plan wever, energy us tu/yr. We recomm	imately a facto nts to be 6E11 se of the nend that the
	 these changes. Market size, share, and penetration assumptions appear reasonable given that this is not a technology as much as a method for applying technology 				

Diamain a Linit	
Planning Unit	.p.
Glass Vision (continue	•
	Development of Advanced Precursor Systems for On-Line Coating of Float Glass
	 The above table reflects energy benefits that apply to the end-use of the glass product, not to the manufacturing process. A decimal point transcription error appears to have led to a serious underestimation of the market size (i.e. the annual output from a typical float glass plant is more than 108 ft2, even if not all float glass plants will sell coated glass). The error was recognized by DOE and corrected as shown in the table above. Market introduction in 2000 (as proposed in the initial submission) appears
	 Market infroduction in 2000 (as proposed in the initial submission) appears unlikely, unless field demonstrations are already prepared. DOE agreed to change the market introduction to 2005. Changes are reflected in the table. Market penetration class was not filled in, but should probably be b or c. DOE agreed and the changes are reflected in the table.
	High Heat Transfer, Low Nox Natural Gas Combustion System
	The energy savings assumptions are reasonable
	 Market share appears unreasonably high, given the number of competitors. We recommend 50% as a more realistic figure. This change is reflected in the table above.
	 Integrated Ion Exchange Systems for High Strength Glass Products The above table reflects energy benefits that apply to the end-use of the glass product, not to the manufacturing process. Market size and growth assumptions appear reasonable
	 Dynamic Expert Systems Control for Optimal Oxy-Fuel Melter Performance Energy use assumptions appear rather low. It was claimed that energy savings for this technology were calculated based on a \$50-\$60 million/yr cost savings. Assuming an average energy cost of \$4 per thousand BTU, this would translate into savings of roughly 15 billion BTU/yr per unit. However, energy savings of 15 million BTU/yr per unit are reported. We recommend that the energy numbers be raised by 1000. This is reflected in the table above. Market size and growth assumptions appear reasonable 2000 market introduction appears unlikely given the R&D completion date of 2001. Given the nature of the technology (mostly software-based), we recommend 2002 as a more realistic date. DOE agreed to the change, which is reflected in the table above.
	 Synthesis and Design of Silicide Intermetallic Materials The P.I. was not able to provide energy usage numbers and did not substantiate assumptions. Because of the lack of data, the energy impacts of this technology have not been included in the table above.
	 Auto-glass process control The P.I. claimed a 10% reduction in energy usage for the proposed technology, but did not provide total energy usage numbers. Due to the lack of data, the benefits of this technology cannot be accurately assessed and were omitted from the table above.

 Table 3:
 OIT Planning Unit Summaries (continued)

Planning Unit	
Glass Vision (continue	d)
	 Cullet Batch Preheater The technology description mentions 15% energy savings, (which is reasonable), but the table shows a 40% savings. We recommend that the savings be adjusted to 15%. DOE recognized the inconsistency and the projections were changed accordingly, as reflected in the table. A 1997 market introduction is incorrect. We recommend that this be adjusted to 1999. These changes are reflected in the table above.
	MAJOR FINDINGS FOR PM
	 Diagnosis and Modeling of High Temperature Corrosion of Superstructure Refractories in Oxy/Fuel Glass Furnaces Technical milestones and deliverables are reasonable and well documented. Development of Advanced Precursor Systems for On-Line Coating of Float Glass No milestones were provided by the project P.I. Given this, the 2000 market introduction appears highly unlikely. As mentioned, the market introduction was modified. This inconsistency emphasizes the importance of having both QM and PM information for the programs reviewed. Integrated Ion Exchange Systems for High Strength Glass Products Technical milestones and deliverables are reasonable and consistent with the anticipated commercialization date.
	 Dynamic Expert Systems Control for Optimal Oxy-Fuel Melter Performance Technical milestones and deliverables are reasonable. As the development phase is expected to be complete by late 2001, a 2000 market introduction date is unlikely. We recommend 2002 as a more likely date. This change was accepted as discussed above. PM data for other projects was not available for review. We strongly recommend that PM data be added in future.
	 DOE RESPONSES AND ACTIONS Discussions were held with the Glass Vision Planning Unit and agreement was reached on making the recommended changes to the energy usage numbers and market introduction date. Two projects claimed that energy benefits would be derived from the end-use of the glass products rather than from their manufacture (Development of Advanced Precursor Systems for On-Line Coating of Float Glass and Integrated Ion Exchange Systems for High Strength Glass Products). Since these are OIT projects, the use of non-industrial QM's was questioned. However, it was decided not to adjust the numbers.

Table 3: OIT Planning Unit Summaries (continued)

		Total Primary I	Energy Displace		
	2000	2005	2010	2015	2020
Preliminary Draft	-	64	194	312	460
Final Submission	-	25	60	100	149
Final Submission	 a core tech processes application Analyses f documents projects an Neverthele overestima DOE staff generally of The divers between e spin-off ap Performan program a for future s slightly mo that such n central ove would be i MAJOR FINDI Ceramic Turb Assumptio are genera Savings an primarily u The project doubtful w conservati changes. Infrared Burnet Total mark assumptio Assumption Assumption Assumption Total mark assumption Assumption The target industries reasonable 	25 IDINGS a good example of hnology that can b . The core technology for GPRA submission ed, reasonable, and their benefits b bess, a number of re- ation of the benefit did their best to c quite knowledgeal sity of CFCC appli energy savings of the reasures generative submissions that are not emeasures generative submissions and for the detailed descriment metrics do exist were erview of them work ncluded on the ter NGS FOR QM ine Components ons on energy saving ally reasonable and re not strictly accrised in power generated the ther this can be we rate of 5 or 6% This is reflected in ers ket, market share, ns are reasonable of the range (25-40 oplications, in other v in comparison work agreed to lower the cagreed to lower the agreed	60 a cross-cutting p be applied across logy is likely to have sion and numbers and displayed a go y project manage ninor inaccuracie ts as is shown in coperate under the pole of their project cations suggests different elements a not yet consider erally show a log ponably defined m or portfolio mana ption of the perfo- ithin the individual uld probably be we mplate for collect ings, market size d well documentations a sustained over a is recommended the table above. market penetration a and in line with ngs per burner ar 0%) indicated. Will est savings to 30 extiles, paper, pain ent growth rate. T the more consernance	100 program that effect a broad range of ave numerous fur s were generally wood understanding ers and principal in s amounted to ar the table above. the tight time sche ts. that little or no ow s of the programs ed are likely to or ical succession o ilestones and goa gement we recom- rmance metrics. Wall programs, but ar- very beneficial. Prion. and technology ed s large turbines lik- currently unrealistically high a 20-year period. d. DOE has agreed on, and cost and information re assumed at 400 hile 40% is probal- be any energy sa- tems). Therefore oard (30% seems 0%. This change hts, and coatings, wo percent would	149 tively suppo findustrial ther industrial ther industrial well g of the nvestigators. dule and we verlap will exi. In fact, othe ccur. f overall als. However mend a We recognized referably they classification ke these are n, as it is A more ed to these equipment lif %, which is t bly achievab vings a lower eners s reasonable is reflected ir none of whid d seem more

Planning Unit	
CFCC (continued)	
	Ceramic Furnace Fan
	Assumptions on energy use, cost, life, and market estimates seem
	reasonable.
	Hot Gas Filters
	Assumptions for energy savings are reasonable
	 Is the market meant to just represent industrial sites or power generation in general? Assumptions for market size are reasonable, although it would be better to use a plant as a unit, rather than a filter (you can't install 1/5000 of a plant!). As these suggestions would not affect the ultimate outcome, no changes to the analysis were recommended.
	 Market share may be optimistic, as the technology will probably also compete with high temperature sintered alloy filters. Given the significant debate over the relative merits of various filter types for these applications, it was decided not to make changes to the analysis.
	• As the technology requires the switch to APFBC technology, which requires very major investments in plant with a life of 25 –40 years, the classification of the technology as b (full market penetration within 10 years) seems too aggressive, especially when considering the history of alternative coal-based power generation technologies. Class c (full market penetration within 25 years) would appear more appropriate. DOE agreed to these changes and
	they are reflected in the table above.
	Immersion Tube Burners
	 The assumptions for energy consumption appear reasonable, but there appears to be an error in the calculation involving natural gas usage for the conventional and proposed technologies: 2 billion lbs/yr /2000 lbs/ton *9 million BTU/ton (natural gas) /1000 BTU / 3100 units = 0.0029 BCF/yr, compared with 1.16 BCF/yr reported in the input spreadsheet. We recommend that this error be corrected and DOE agreed. This is reflected in the table above.
	• Energy savings of 36% are quoted, but it is not clear what that is compared with. It appears unlikely that identical savings can be achieved compared with competing gas and electric technology (i.e. what is the baseline). DOE explained satisfactorily that the savings are a weighted composite of the savings achievable compared with gas and electric technology.
	Assumptions on market size and share appear reasonable.
	 Radiant Burners Assumptions on energy use, cost, life, and market estimates seem
	 reasonable Assumptions on the magnitude of energy savings appear reasonable (assuming higher emitter temperature is the cause for these savings), although it is not stated explicitly what causes the higher efficiency. DOE confirmed that the higher emitter temperature is the reason for the increased efficiency.
	MAJOR FINDINGS FOR PM
	Ceramic Turbine Components, IR Burners, Hot Gas Filters, Immersion Tube Burners, and Radiant Burners
	Goals and milestones are reasonable and lead to the targeted commercialization date. A bit more detailed description would be valuable. I.e. aspects to be proven in field test.

Table 3: OIT Planning Unit Summaries (continued)

Table 3:	OIT Planning Unit Summaries (continued)
----------	---

Planning Unit							
CFCC (continued)							
	 Ceramic Furnace Fans Performance Measures are not reported. Nevertheless, in the template, there is mention of a two-year demonstration program DOE RESPONSES AND ACTIONS Discussions were held with the CFCC Planning Unit and agreement was reached on the proposed changes. Specifically, the market growth rate for the Ceramic Turbine Components project was lowered from 14% to 6%; the energy usage numbers for Immersion Tubes were corrected; and the energy efficiency increase for IR Burners was changed to 30%. 						
Planning Unit							
Metals Casting							
		Total Primary	Energy Displace	d (Trillion Btus)			
	2000	2005	2010	2015	2020		
Preliminary Draft	-	11	26	55	89		
Final Submission	-	8	20	46	77		
	 8 20 46 77 GENERAL FINDINGS Analyses for GPRA submission and numbers were generally well documented, reasonable, and displayed a good understanding of the projects and their benefits by project managers and principal investigators. Nevertheless, a number of minor inaccuracies amounted to a slight overestimation of the benefits as is reflected in the table above. DOE staff did their best to cooperate under the tight time schedule and were generally quite knowledgeable of their projects. The savings projected above represent a reduction of almost 20% in the year 2020. In earlier years the savings are substantially lower. Given the large number of projects in the metals casting vision there is some potential for overlap between various projects that may cause some double-counting if all projects are successful (i.e. if the savings from the first technology are 10%, the second technology has only 90% left to save from). However, savings from projects not reviewed will likely offset this double counting to some extent. We believe that the approach chosen is a reasonable one, given the practical limitations for the GPRA analysis. Performance Measures generally show logical succession of overall program activities with reasonably defined milestones and goals. However, for future submissions and for portfolio management we recommend a slightly more detailed description of the performance metrics. We recognize that such metrics do exist within the individual programs, but an organized central overview of them would probably be very beneficial. Preferably they would be included on the template for collection. 						

Table 3:	OIT Planning Unit Summaries (continued)
----------	---

Planning Unit					
Metals Casting (continued)					
	MAJOR FINDINGS FOR QM				
	Gating of Aluminum Permanent Mold Castings, In-Stream Inoculation for Aluminum Alloy Casting Processes Reengineering of Steel Casting Manufacturing Predicting Pattern Tooling and Casting Dimensions for Investment Casting Clean Steel: Mach. of Clean Cast Steel; and Accelerated Transfer of Clean Steel Technology				
	Steel Foundry Refractory Lining Optimization: EAFs Mold Materials for Permanent Molding				
	Thin Wall Cast Iron				
	 Assumptions on energy savings, market size, competing technologies, and technology classification are reasonable Die Materials for Critical Applications 				
	 Assumptions on market size, and technology classification are generally reasonable and well documented 				
	 Energy savings are based on the assumption that foundries using this technology totally switch from using virgin aluminum to secondary aluminum. This may be too optimistic. No changes were made. 				
	Enhancements in Magnesium Die Casting				
	 Assumptions on energy use and technology class are reasonable. The target market needs to be better defined. It is claimed that this technology will result in an increased use of magnesium (over ferrous materials) in automotive parts, and that energy savings would result from the lower energy requirements of magnesium smelting. An appropriate target market might be to quantity of ferrous auto parts that could potentially be displaced by magnesium. However, the current target market was defined as the quantity of magnesium currently produced for the automotive sector. Probably, this analysis is more conservative than necessary. No changes 				
	 were made. Energy usage numbers appear to be high due to a few errors in the calculation (assumptions are reasonable). The unit is defined as one automobile with 250lb of replaceable castings. If ferrous castings require 41 million BTU/ton cast, then the energy usage for current technology is 41E+06 BTU/ton x 250 lb/2000 lb per ton = 5.125 million BTU/unit. The specified energy usage for the current technology is 6000 kWh x 10,500 BTU/kWh + 20,000 cf x 1,030 BTU/cf = 83.6 million BTU/unit. We recommend that the energy usage numbers for the current and proposed technologies be scaled down by a factor of 16.3 (from 83.6/ 5.125). These changes were agreed to by DOE and are reflected in the table above. 				

Planning Unit	
Metals Casting (continu	led)
	Optimization of the Squeeze Casting Process
	 Assumptions on energy use and technology classification are realistic and well documented
	 The target market needs to be better defined. It is claimed that this technology will result in an increased use of aluminum (over ferrous materials) for load-bearing automotive parts, and that energy savings would result from the lower energy requirements of aluminum smelting. An appropriate target market might be the quantity of ferrous load-bearing auto parts that could potentially be displaced by aluminum. However, the current target market was defined as the quantity of aluminum currently produced for the automotive sector. It is likely that the impact (if any) on the projections would be modest. No changes were made. Energy usage numbers appear to be high due to some computational errors
	(assumptions were reasonable). The unit is defined as one automobile with 300lb of replaceable castings. If ferrous castings require 41 million BTU/ton cast, then the energy usage for current technology is $41E+06$ BTU/ton x 30 lb/2000 lb per ton = 6.15 million BTU/unit . The specified energy usage for the current technology is 6000 kWh x 10,500 BTU/kWh + 20,000 cf x 1,030 BTU/cf = 83.6 million BTU/unit . We recommend that the energy usage numbers for the current and proposed technologies be scaled down by a factor of 13.6 (from 83.6/ 6.15). These changes were agreed to by DOE and are reflected in the table above.
	Fast Response Measurements of Internal Die Cavity Temperatures
	 Energy usage and market assumptions appear realistic
	 The market introduction date of 2000 is a little optimistic. We recommend a more conservative date such as 2002. These changes were agreed to by DOE and are reflected in the table above.
	Casting Characteristics of AI Die Casting Alloys
	Energy savings assumptions are realistic
	 Since the project report is to be written in late 2000, a market introduction in that same year seems unlikely. A more reasonable date is 2002. These
	changes were agreed to by DOE and are reflected in the table above.
	Qualitative Reasoning for Diecasting Design Applications
	 Energy usage assumptions appear reasonable The key deliverable, i.e. the final version of the software, is expected to be ready by late 2000, in view of this a market introduction date of 2000 is optimistic. 2002 would be more realistic. These changes were agreed to by DOE and are reflected in the table above.
	Non Incineration Treatment to Reduce Benzene
	 The energy usage and energy savings assumptions appear reasonable Considering the technical milestones, the market introduction year of 2000 seems optimistic. We recommend 2002 as a more likely date. These changes were agreed to by DOE and are reflected in the table above.
	 Yield Improvement in Steel Casting (Yield II) Assumptions on energy savings, market size, and technology classification
	 are generally reasonable and well documented It seems unlikely that this technology will be introduced to the market by 2000. We recommend 2002 as a commercialization date. These changes were agreed to by DOE and are reflected in the table above. Systematic Microstructural & Corrosion Performance Evaluation
	Although the technological benefits are not clearly specified, the underlying energy assumptions seem reasonable.

Table 3: OIT Planning Unit Summaries (continued)

Table 3: OIT Planning Unit Summaries (continued)

Planning Unit	
Metals Casting (continu	Jed)
incluse casting (contine	MAJOR FINDINGS FOR PM
	Gating of Aluminum Permanent Mold Castings, Die Materials for Critical Applications,
	Enhancements in Magnesium Die Casting,
	Optimization of the Squeeze Casting Process ,
	Predicting Pattern Tooling and Casting Dimensions for Investment Casting, Thin Wall Cast Iron
	 Deliverables and milestones are reasonable and consistent with the projected commercialization date
	In-Stream Inoculation for Aluminum Alloy Casting Processes, Reengineering of Steel Casting Manufacturing,
	Clean Steel: Mach. of Clean Cast Steel; and Accelerated Transfer of Clean
	Steel Technology,
	Systematic Microstructural & Corrosion Performance Evaluation Steel Foundry Refractory Lining Optimization: EAFs
	 Deliverables and milestones seem reasonable, although details regarding the technology transfer process are lacking
	Fast Response Measurements of Internal Die Cavity Temperatures
	 Milestones for the bench-scale and full-scale demonstrations of the product seem reasonable.
	Considering the uncertainties in the technology transfer process, a later
	market introduction date is more likely. We suggest 2002 as a more realistic date.
	Casting Characteristics of AI Die Casting Alloys
	• The steps and milestones leading to full commercialization are lacking. This makes the year of market introduction somewhat uncertain. In view of this, we suggest a later date such as 2002.
	Mold Materials for Permanent Molding
	 Deliverables seem reasonable, although details regarding the technology transfer process are lacking
	Qualitative Reasoning for Diecasting Design Applications
	Deliverables and milestones are reasonable
	• The projected commercialization date of 2000 is somewhat aggressive. We recommend 2002 as a more likely date.
	Non Incineration Treatment to Reduce Benzene
	 The technical deliverables that will follow the laboratory and plant trials are not outlined.
	 Considering the uncertainties in the technology transfer process, a later market introduction date is more likely. We suggest 2002 as a more realistic date.
	Yield Improvement in Steel Casting (Yield II)
	Deliverables seem reasonable, although details regarding the technology
	transfer process are lacking
	 Considering the uncertainties in the technology transfer process, a later market introduction date is more likely. We suggest 2002 as a more realistic date.
	DOE RESPONSES AND ACTIONS
	 Discussions were held with the metals casting planning unit and agreement was reached on the proposed changes to the energy usage numbers and market introduction dates.

Table 4: BTS Planning Unit Summaries

	Total Primary Energy Displaced (Trillion Btus)				
	2000	2005	2010	2015	2020
Preliminary Draft	8.3	66.0	200.1	377.0	525.4
Final Submission	9.5	69.7	207.3	386.3	535.4
	 Preliminary I funding for ti Savings are programs. E (represents The market Developmer The market by 2010. He drops down A detailed au including: building o energy us automate buildings a new wa approach chosen to However 	Draft to the Fin his planning un a combination Building codes 80% of the sav penetration for the program is ap penetration for to 21% by 202 ccount of the 3 codes (which, a sed by 20%), and building syste can save up to ay of construction at the design so bowork together	of model energy of were the primary r ings). Commercial Build oproximately 1% b Commercial Code backsliding on ad D. This appears re D% energy saving ccording to DOE- ems (some studie 10% or more of the g buildings, using state so that all co (e.g. proper sizin documented by t	resent increases code adoption an method of achiev lings Research a by 2020. This is of es reaches a may option, market pe asonable. s shows a variety 2 simulation runs s have shown co he energy used) g the "whole build imponents of buil g of equipment).	in the level d voluntary ing savings nd conservative dimum of 36° enetration y of activities , reduce the mmercial ling" system dings are
	 Pertains only All of the mill building cod Planning Un consistent w One planned the Commen being achiev DOE RESPONS The findings additional do The reviewe 	ance measures y to these perfor lestones and pl es. Given that it are through of the goal of the d activity would cial Codes are yed. ES AND ACTIO have been dis boumentation s	cussed with Donn nould be provided IS estimates appe	s. deal with the ad- vings associated stones appear ap erification proced and that the energ a Hostick, PNL. by BTS.	option of with the propriate and ure to insure y savings are It was agree

Table 4:	BTS Planning Unit Summaries	(continued)
----------	------------------------------------	-------------

	Total Primary Energy Displaced (Trillion Btus)				
	2000	2005	2010	2015	2020
Preliminary Draft	1.5	37.8	125.2	230.2	322.9
Final Submission	1.6	39.6	131.2	242.0	340.7
	 MAJOR FINDINGS FOR QM Overall, the DOE/BTS numbers seem reasonable. Increases in funding for this Planning Unit Savings are a combination of residential energy code adoption programs. The savings are distributed evenly. The GPRA submittal shows homes using 30% less energy in 19 less energy in 2004 relative to typical homes in 1990. No technical justification for either the 30% or 50% has been of of technologies that can be universally applied needs to be door show the level of energy savings technically feasible. The 30% levels are not out of the realm of possibility, but they are aggres actual path to these savings needs to be documented. The energy savings are assumed for space conditioning and we end-uses only, since no other measures or technologies are dis not clear from DOE's submittal what technologies provide savir insulation, furnace, a combination, etc.). 70% market penetration by 2010 is a typographical error – it sh The 10%, as well as the 4% in 2004, would appear to be conservation. 				in the level of n and volunta 1999 and 50° offered. A lis ocumented to % and 50% essive and th water heating discussed. It i rings (i.e.
	 not support Additional thousing, we to be realize The prograwhen home one-tenth of additional the approximate DOE RESPONS The finding additional of the review 	are consistent wi t the level needer measures for exis- ould paint a clea- ied in this area. Im has a stated g es cited in the mi of 250,000. Bette nomes, but the mi tely 4% of all hom SES AND ACTIC is have been disc documentation sh	cussed with Donn hould be provided S estimates appe	brojected in the C ck, other than low the program's gr mulative homes are summed, the is needed to just asonable, since in this time period a Hostick, PNL. by BTS.	QM. <i>i</i> -income bals are going by 2004, yet y represent ify the it represents It was agreed

Table 5: Final Planning Unit Submission

Planning Unit			
	Total Primary F	nergy Displaced	(Trillion Btus)
	2000	2010	2020
BTS			_0_0
Commercial Buildings Integration	10	207	535
Community Partnerships Program	8	225	434
Energy Star	3	106	210
Equipment, Materials & Tools	36	1,369	3,542
Residential Buildings Integration	2	131	341
State Energy Program	6	56	99
Technology Roadmaps and Competitive R&D	0	100	347
Weatherization Assistance Program	7	96	184
OIT			
Advanced Materials (CFCC and AIM)	0	93	237
Aluminum Vision	0	49	187
Chemicals Vision	0	151	830
Cogeneration - CHP	27	198	435
Forest & Paper Products Vision	0	194	1,508
Glass Vision	0	40	73
IAC	71	93	99
Integrated Delivery Program	27	158	331
Inventions & Innovations	112	107	117
Metals Casting Vision	0	20	77
NICE-3	19	109	144
Petroleum Refining Vision	0	218	340
Steel Vision	0	36	110
OPT	, , , , , , , , , , , , , , , , , , ,		
Biomass Power R&D	28	422	533
Energy Storage	0	1	1
Geothermal Energy R&D	56	182	248
High Temperature Superconductivity	0	0	9
Hydrogen (Fuel Cell)	4	92	642
Hydropower	8	80	183
Open Solicitation	1	3	3
Photovoltaic Systems R&D	0	6	49
Power Systems Integration	23	124	132
Solar Buildings	3	30	112
Solar Thermal	0	4	29
Wind Energy R&D	20	207	613
OTT			0.0
Advanced Automotive Technologies	0	639	1,589
Biofuels	0	360	1,001
Heavy Duty Vehicle Technologies	6	203	396
Transportation Materials Technology	0	12	50

The final FY2000 program impact estimates may differ in some cases from the "revised submissions" contained in Tables 1–4 due to increases in the FY2000 budget request since the revised numbers were estimated. In cases where a program did receive a FY2000 budget request increase, the revised submission served as the baseline for estimating the final program impact estimate.