BTO Emerging Technologies R&D Goals

As a result of ET sponsored research, cost effective technologies will be introduced into the marketplace by 2020 that will be capable of reducing a building’s energy use by 25% relative to 2010 cost effective technologies, and 35% by 2030.

Technology-specific targets relative to the 2030 primary energy consumption projected by the 2010 Annual Energy Outlook:

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting</td>
<td>30%</td>
<td>65%</td>
</tr>
<tr>
<td>HVAC</td>
<td>10%</td>
<td>25%</td>
</tr>
<tr>
<td>Water Heating</td>
<td>20%</td>
<td>35%</td>
</tr>
<tr>
<td>Appliances</td>
<td>15%</td>
<td>30%</td>
</tr>
<tr>
<td>Windows/Envelope</td>
<td>15%</td>
<td>35%</td>
</tr>
<tr>
<td>Sensors & Controls</td>
<td>10%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Source: National Institute of Standards and Technology, NIST Framework and Roadmap for Smart Grid Interoperability Standards
Buildings will be self-configuring, self-commissioning and self-learning such that they optimize operation, maximize energy savings cost effectively and can participate in transactions within the building, between buildings and with the grid.
BTO’s Integrated Approach

Research & Development
- Develop technology roadmaps
- Prioritize opportunities
- Solicit and select innovative technology solutions
- Collaborate with researchers
- Solve technical barriers and test innovations to prove effectiveness
- Measure and validate energy savings

Market Stimulation
- Identify barriers to speed and scale adoption
- Collaborate with industry partners to improve market adoption
- Increase usage of products & services
- Work through policy, adoption, and financial barriers
- Communicate the importance and value of energy efficiency
- Provide technical assistance and training

Codes and Standards
- Establish minimum energy use in a transparent public process
- Protect consumer interests
- Reduce market confusion
- Enhance industry competitiveness & profitability
- Expand portfolio of EE appliances & equipment
- Raise the efficiency bar
BTO Sensors and Controls Program Goals and Areas

Develop a low-cost, self-powered wireless sensor platform and self-configuring, self-optimizing controls that:

- Can help integrate buildings with the rest of the electrical grid
- Enable automatic energy transactions with the grid

1. **Open-Source Sensors** (i.e. open-source reference designs for wireless, self-powered sensor packages)

2. **Foundational Control Theories** (i.e. control algorithms and the resulting application of the controls, including solutions for retro-commissioning)

3. **Transaction-based Controls** (i.e. open-architecture control platforms for buildings that are transactive and energy-ready)
FY15 BTO Sensors and Controls Projects

1. Core National Lab Efforts
 a) Unique and critical resources held by DOE National Labs to support industry and R&D community.
 b) Intellectual and physical assets with high start up and/or shut down costs.

2. Awarded by Funding Opportunity Announcements to industry, academia or national labs
 a) ET-CBI Open Lab Call
 b) US-China CERC, US-China CBERD, Penn State CBEI
 c) FY13 Turn-Key and FY14 BENEFIT
Pathway to commercialization of low-cost wireless sensors

Project Goal:
Develop and deploy low-cost wireless sensors for building monitoring to realize energy savings through optimal control of building subsystems.

- Reduce cost to manufacture and commission ($1-$10/node)
- Low-power wireless communication driven by energy harvesting techniques
- Retrofit-friendly devices with minimal maintenance
- Multi-sensor platform tailored for building monitoring needs
- Leverage additive, roll-to-roll manufacturing techniques to enable rapid adoption

Recent Accomplishments:
Cooperative Research and Development Agreement (CRADA) recently established with commercial manufacturer, Molex to reduce cost through manufacturing improvements.

Print components on flexible substrates:
- circuits
- sensors
- antenna
- photovoltaics
- battery

Low temperature photonic curing:
- sinters ink for high electric conductivity
- plastic substrate undamaged

Peel and stick flexible platform:
- pick and place unprintable components
Opportunity:
Low cost, maintenance-free wireless sensors will enable enhanced building controls for energy efficient operation

Problem:
Existing wireless sensors require battery or AC power, leading to high maintenance labor and cost, especially for large, distributed sensor networks

Solution:
Self-powering low cost wireless sensors ~$15/node (compared to $25-$225 for existing products), and annual maintenance cost of $0 (vs. $160k-270k/year for existing products) for a small town.

FY16 goals (metrics):
Prototype sensor network, ready for production
• Self-powering sensor nodes, harvesting vibrational energy in indoor environments.
• Wireless connectivity through standard Zigbee network
• Technical Advantages:
 – Easy installation: no professional required
 – Self-sustaining: no battery needed
 – Cloud based: accessible and controllable from computer or mobile devices
 – Multiphysical measurement: temperature, humidity, illumination, pressure etc.
 – Fully adaptive: transmission rate self-adjustable and remote programmable
Technology/Approach Summary

- Today’s commercial market does not offer building equipment health monitoring system capabilities.
- The industry needs a scalable, robust health monitoring platform consisting of sensing, computation, and visualization that is suitable for retrofit applications at an installed cost significantly below the common industry average today.

Technology/Approach Impact

- Develop a comprehensive nonintrusive load monitoring system capable of identifying opportunities for energy efficiency within building subsystems.
- Identify equipment degradation and inefficiencies in energy delivery and improve the energy efficiency of the buildings by 15-25% while reducing the cost of deployment by 20-30% compared with the current sparse field diagnostics alternatives.

Project’s Key Idea

This integrated system consists of:
(1) low-cost, nonintrusive power metering to augment existing sensor sources;
(2) an integrated power disaggregation fault identification system based on signal unmixing techniques; and
(3) a capability to deliver diagnosis information to building managers, including impact of fault on energy efficiency, for rapid response.

Proposed Goals

<table>
<thead>
<tr>
<th>Metric</th>
<th>State of the Art</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency gain for small/medium commercial buildings by fault detection</td>
<td>~0%</td>
<td>15-25% energy efficiency gain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FY13 Turn-Key FOA, Phase II

Problem:
Lack of low cost, both equipment and installation, open-source building energy management (BEM) software that allow seamless integration with device controllers (HVAC, lighting and plug loads) from various manufacturers.

Project Goal:
Develop a, plug and play open source open architecture control system that improves energy efficiency, optimizes electricity usage, and improves the comfort for small and medium-sized buildings.

Solution:
Development of cost-effective open architecture controls platform for small and medium-sized buildings.

Key Features of platform:
- Open Source (first application to be built on DOE-developed transaction platform, VOLTTRON)
- Open architecture (interoperable)
- Plug and Play
- Auto mapping
- Thermostat, lighting, plug load devices
- Grid ready
- Agent based applications
Defining the Pathway to Achieve our Future Vision

VISION:
Self-configuring, self-commissioning and self-learning buildings that participate in transactions

<table>
<thead>
<tr>
<th>NEEDS</th>
<th>GAPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Smart" Devices</td>
<td>• Plug ‘n play</td>
</tr>
<tr>
<td></td>
<td>• Self-diagnosis</td>
</tr>
<tr>
<td></td>
<td>• 2-way communication</td>
</tr>
<tr>
<td></td>
<td>• Redundancy</td>
</tr>
<tr>
<td>Communications Platform</td>
<td>• APIs</td>
</tr>
<tr>
<td></td>
<td>• Common taxonomy</td>
</tr>
<tr>
<td></td>
<td>• Wiring/packaging protocol</td>
</tr>
<tr>
<td></td>
<td>• Speed/capacity/routing/security</td>
</tr>
<tr>
<td>The Distributed "Brain"</td>
<td>• Hierarchy</td>
</tr>
<tr>
<td></td>
<td>• Established tenants and boundaries</td>
</tr>
<tr>
<td></td>
<td>• Algorithms that enable smart response</td>
</tr>
<tr>
<td>Proven ROI</td>
<td>• Cost effective</td>
</tr>
<tr>
<td></td>
<td>• Significant energy savings</td>
</tr>
<tr>
<td></td>
<td>• Serviceability</td>
</tr>
</tbody>
</table>
Purpose of Roadmap:

- Identify priority R&D areas of interest
- Identify cost and performance metrics and targets for each key R&D area, and timeline to achieve these targets
- Describe technical and market challenges to be overcome, R&D activities and milestones, key stakeholders, and potential energy savings that could result if cost and performance targets are met
- Identify methods for improving technology performance and specific strategies for reducing costs and mitigating any other market barriers, which would increase the likelihood of mass-market technology adoption
- Resource for public and private decision makers evaluating and pursuing high-impact R&D focused on advancing buildings sensors and controls technologies
Roadmap Development Timeline

- Stakeholder Workshop: Spring 2015
- Review of Workshop Report by Attendees
- External Peer Review of/Input to Roadmap Draft: Summer 2015
- Publish on DOE/BTO Website: Fall 2015
Interested in providing input to the Roadmap as a Contributor and/or Reviewer?

Marina Sofos
Marina.sofos@ee.doe.gov