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Goal Statement

Improve process economics of Catalytic Fast Pyrolysis (CFP) through
understanding of chemistry and physics

« Demonstrate technical targets at a laboratory scale
. Improve carbon efficiency from 27% to 44% in FY2022
. Reduce oxygen content in oil from 15% to 6.4% in FY2022

« Build an understanding of underlying science of CFP so as to reduce
inefficient walk through Edisonian space to improve the technology

* Provide guidance for development of new catalysts and operation of
pilot scale reactors

Major Objectives for Ex Situ Pyrolysis Vapor Upgrading

Hydrogen Addition during Vapo Initia If e of hydrogen to d coke and non-conden: after 2017
Upgrading orpo! t e hydrogen to improve produ ct quality by |ncreasing H/C ratio
Molecular Combination (Coupling) Initial work using model compounds; after 2017 demonstrate using pyrolysis vapors

Base cases assume fluidized catalysts (modified zeolites); consider the option to use

Feleliteel Fliesess Q)i catalysts that are feasible in fixed bed reactors (preceded by a hot gas filter)

Vapor Products Wt. % of dry biomass unless noted. Values rounded off except for smaller improvements.
Non-Condensable Gases 35 34 32 30 23
Aqueous Phase (% C Loss) 25(2.9) 25 (2.9) 25 (2.4) 26(2.3) 30(1.3)
Solids (Char + Coke) 12 +11 12 +10.8 12 +10.5 12 +10.2 12+8.0
Organic Phase 17.5 18.5 20.2 22.0 27.2

H/C Molar Ratio 1.1 11 1.2 i3 1.6
Carbon Efficiency (%) e 28 31 34 Q
Oxygen Content (% of organic) @ 14.8 14.0 E @

Hydroprocessing C Eff. (% of org.liq.) 88 88 89 90 94

Carbon Eff. to Fuel Blendstocks (%) 23.5 25.0 27.6 30.6 41.5

Energy Efficiency to Fuels (LHV basis) 30.4 323 36.0 40.2 56.6

Minimum Fuel Selling Price ($ / GGE) $6.47 $5.92 $5.24 $4.58 $3.31

Abhijit Dutta, Thermochemical Platform Analysis Project , WBS 2.1.0.302
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Example: Deactivation of ZSM-5 catalyst during feeding of
biomass pyrolysis vapors

* Laboratory experiments showed
ranges of biomass-to-catalyst ratio o Pineprimary vapos
where catalyst is active R e (romatey

e Suggests riser reactor (NREL’s DCR
reactor and TCPDU) are ideal
reactors for vapor phase upgrading

* Fixed and fluidized bed reactors
not ideal

* This experiment was completed in AR

N

under 2 hours. - 0.5 1.0 | 1.5 2.0 25 3.0

* ReSUltsare used by CompUtahonal Mukarakate, C., et al. (2014). Real-time monitoring of the
Pyr0|yS|S Consortlum N CFD deactivation of HZSM-5 during upgrading of pine pyrolysis
. . . vapors. Green Chemistry, , - .
simulations to suggest operating pore. Green Chemistry, 1613), 1444-1461
conditions for DCR reactor

/" Catalyst
deactivated

>

(relative

6
10 Component scores
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Project Quad Chart Overview

Barriers
Barriers addressed

Tt-H. Bio-Oil Intermediate Stabilization and
Vapor Cleanup

Timeline
e Start Date: October 1, 2013
* End Date: September 30, 2017
 50% percent complete

Tt-L. Knowledge Gaps in Chemical Processes

Partners & Roles
BUdgEt * Johnson Matthey: Catalyst development and
characterization (Vapor Phase Upgrading)

Total Planned * Colorado School of Mines (Richards, Trewyn):
Funding (FY 15- ) .
Project End Catalyst development and characterization
Date * University of Colorado (Ellison): mechanisms
of pyrolysis
31,777k 51,816K  56,970K * LBL - Advanced Light Source (Ahmed):
pyrolysis
z;zjted %OOK %OOK Dl « MIT (Roman): Catalyst development
Share * ORNL (Daw), ANL (Curtiss): Computational
(Comp.)* modeling
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1- Project Overview
e (Catalytic Fast Pyrolysis (CFP) investigated since 1986

o ZSM-5 was first and most effective catalyst to date
o Done properly it can achieve low oxygen content oil
o Low Cyields (< 15%) have been reported. Loss to coke and light gases

* Incomplete understanding of the process

 We conduct laboratory experiments with model compounds

and biomass pyrolysis vapors
o Provide understanding of chemical mechanisms to Johnson Matthey to develop
new catalysts

o Provide data for technoeconomic analysis and planned pilot studies at NREL
(DCR and TCPDU)

o Collaborate with Computational Pyrolysis Consortium (WBS 2.5.1.302)

Co 27% -> 34% FY22 Targets Cert > 44%

FY17 Targets " 150, 5 12.5% 0. ->6.4%
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2 — Approach (Technical)

* Critical success factors:

o At the laboratory scale, we will reach the following technical targets:

— Carbon yields of 34% and oxygen content of 12% by 2017 will be achieved by establishing
reactor conditions (high biomass-to-catalysts ratio, short residence time), stripping products
with steam and the addition of hydrogen (< 5 bar)

— Carbon yields of 44% and oxygen content of 6% by 2022 will be achieved by developing new
catalysts to better utilize added hydrogen and to direct reaction through different products
(furans)

o Discover reaction pathways that reduce search through Edisonian space
o Provide understanding and data that simplify operation at pilot scale

* Task plan

o Development and testing of catalysts at lab scale for the Johnson Matthey CRADA
— Data and understanding generated in this project is used by JM to develop
catalysts

o Laboratory performance testing of CFP improvements — Experiments are

conducted at 100g scale using improvements discovered at 1g scale to measure C
yield and O content.

o Chemistry of catalytic upgrading — chemical mechanisms of CFP are studied using
reactions of model compounds and biomass.

o Biomass, catalyst and bio-oil: changes and characterization — Measurements of
starting material, catalyst and resulting product are used to infer reaction
mechanisms.
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2 — Approach (Technical cont)

e Challenges

o Pyrolysis vapors contain a mixture of many molecules with different
functional groups — condensable and reactive

o Catalysts deactivate rapidly
o Heterogeneous chemical reactions are difficult to measure directly

* Experiments conducted at multiple scales

o Small reactors (1g catalyst) and Molecular Beam Mass Spectrometer
(MBMS): universal detection in real time

o Pyroprobe GCMS (5 mg): direct measurement and quantification of
products

o 2” fluidized bed reactor (100g): collection of oils. Being modified for
continuous replacement of catalyst

o Laminar entrained flow reactor (100g): simulation of conditions in a riser
reactor

o Product and catalyst analysis: NMR (600 and 400 MHz), SEM, TEM, light
microscopy, etc

Baseline Experimental conditions: Pine pyrolysis vapors
over Nexceris ZSM-5
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2 — Approach (Management)

* Track progress
o Quarterly progress reports
o Quarterly SMART milestones
o Go/No-Go points to direct research

 Monthly task meeting
* Johnson Matthey CRADA

o Monthly teleconferences
o 1-2 face-to-face meetings per year at NREL

Example Milestone (Q3 FY2015): Compare catalysts developed by WBS 2.3.1.314 to
determine if hydrogenation can increase yields to 40% at labscale (< 5 g catalysts).

Project integration for the overall NREL/BETO thermochemical platform:

WBS: 2.3.1.313 2.3.1.315 2.3.1.314 2.4.1.301 2.1.0.302
Catalytic Pyrolysis Biomass Upgrading: Biomass ) ) ) Technoeconomic
Sciences Catalyst Development/ Deconstruction: Catalyst Engineering Integration Analysis of Integrated
Testing Development/Testing and Scale-up VPU Process
Pyrolysis science Ex-situ catalyst - :
fundamentals, catalyst Ex-, in-situ Catalyst evaluation/ Ex-, in-situ TCPDU _p'|°t Ex-, in-situ, product/
modeling development/evaluation characterization scale qemonstratlon process costs at pilot
Lab scale Lab scale Lab-small pilot Pilot scale scale
! !
mg-g > g-kg >100’s kg
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3 - Technical Accomplishments/ Progress/Results

Will present progress on the following:

* Qur experimental measurements were used by the
Thermochemical Platform Analysis Project to determine the

SOT
« Studies to address the 2017 technical targets C . 279% -> 34%
. . . eff 0~ 0
o We compared in-situ and ex-situ CFP 0: 15% -> 12.5%
o We determined limits of biomass-to-catalysts ratio for catalyst
deactivation

o The activities of catalysts with different acidities were compared
o The addition of steam was investigated for increasing the carbon
yield Cot  ->44%
« 2022 Targets: New catalyst development 0. ->6.4%

o We have screened catalyst provided by Johnson Matthey to identify
mechanisms that lead to other products (furans)

o The selective hydrogenation of C=C bonds has been investigated as
a means of increasing carbon yields and reducing light gas formation

NATIONAL RENEWABLE ENERGY LABORATORY 9



Results Measured for State of Technology (SOT)

@ VENT

« 2” fluidized bed reactor L ey e
o In-and ex-situ g ] sz

o 150 g h't

o Fully characterized

HOTVAPOR  COLLECTION v
. o BUBBLING- ANALYSIS FILTER
BED
 Baseline catalysts (Nexceris
UPGRADER PRODUCT
NITROGEN GAS

ONLINE GAS ANALYSIS

o Clay, Al,0; and SiO, binder
o Mass balance 86% - 97% Q

o EXx-situ (SIOZ) Major Objectives for Ex Situ Pyrolysis Vapor Upgrading

- H o (o)
C yield: 27% W me o m

. .
. (o)
- O C O n t e n t I n O I I . 1 5 A) Hydrogen Addition during Vapor Initial focus on use of hydrogen to reduce coke and non-condensable gases; after 2017

Upgrading incorporate hydrogen to improve product quality by increasing H/C ratio

[
. Va I u e S fro m t h I S w o r k We r e Molecular Combination (Coupling) Initial work using model compounds; after 2017 demonstrate using pyrolysis vapors
Additional Process Options Base cases assume fluidized catalysts (modified zeolites); consider the option to use
P catalysts that are feasible in fixed bed reactors (preceded by a hot gas filter)

[
u S e d by t h e I h e r m O c h e m I ca I Vapor Products Wt. % of dry biomass unless noted. Values rounded off except for smaller improvements.

o . Non-Condensable Gases 34 32 30 23
A Phase (% C Loss) 25(2.9) 25(2.9) 25 (2.4) 26 (2.3) 30(1.3)
Platform Analysis Project to
[ ] [ ] [ ] .
determine the SOT, which is T I T —
150

° Carbon Efficiency (%) 28 31 34 44
u S e d I n t h e M Y P P Oxygen Content (% of organic) 14.8 14.0 125 6.4
Hydroprocessing C Eff. (% of org.liq.) 88 88 89 90 94
Carbon Eff. to Fuel Blendstocks (%) 235 25.0 27.6 30.6 41.5
Kristiina lisa, Rick French, Matt Yung, NREL quarterly milestone, Dec 31, 2014 S I 23 360 02 %66
Minimum Fuel Selling Price ($ / GGE) $6.47 $5.92 $5.24 $4.58 $3.31
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Ex-Situ CFP was compared to In-Situ CFP

* 27FBR Hydrocarbon Yields
* Milestone: June 30, 2014 In-situ
° C yle|dS - 2.0E-08 : )
o In-situ: 24% 15608 1 CatalySt deacnvatﬁgdel
o Ex-situ: 20% Similar "o
—
* O content Results oo ——Cycles
o In-situ: 21% e
o Ex-situ: 18% e 0.0E+000-0 0.5 1.0 15
 Reactions were conducted in batch et
mode with regeneration after each Hydrocarbon Yields
batch of biomass Ex-situ

e« Deactivation was observed after
each batch in the in-situ
configuration and not in ex-situ.

* Filtration in the ex-situ configuration

1.5E-08

——Cycle 1

1.0E-08 = Cycle 2

Intenisty

Cycle 3

likely removed alkali metals sor0o | o
* This results show that catalyst

fouling will be reduced using using 0.0E+00

o . . - 0.0 0.5 1.0 1.5 2.0

filtration and will favor ex-situ CFP Blomass/Catalyst

Kristiina lisa, Rick French, “Compare in situ and ex situ catalytic pyrolysis at the
bench scale. Measure yield, product composition, deactivation and coke/char
formation”, NREL Milestone Report, June 30, 2014
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Catalyst Deactivation Suggests Reactor Configuration

 Upgrade vapors over HZSM-5

* Fixed bed, sequential addition of Catalyst Deactivation
biomass pyrolysis vapors
* Monitor products with MBMS o pin primary vpors

—B~ Furans, phenol and cresols
—A— Hydrocarbons (Aromatics)

o Add pulses of pyrolysis vapors

o Monitor chemical composition of
vapors as catalyst deactivates g

* Confirmed with pyroprobe GC/MS

e Short reaction time, low biomass-to-
catalyst ratio optimal for hydrocarbon
production

* Suggests that reactors with tightly

controlled biomass/catalyst contact /b—’ SHR. L.
are desirable

o Risers no
o Entrained flow oxygenates
o Continuous catalyst replacement

s (relative

6
10 Component score

active
catalyst

Mukarakate, C., et al. (2014). Real-time monitoring of the deactivation of HZSM-5
during upgrading of pine pyrolysis vapors. Green Chemistry, 16(3), 1444-1461.
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Riser Reactors Are Well-Suited for CFP

* Findings from laboratory studies NREL’s pilot riser reactor
suggest that riser reactors are ideal = -~ =71
for CFP ' i

e Davison Circulating Riser (DCR)
Reactor and riser in TCPDU will be
used for larger scale experiments

* Our lab results suggest reaction
conditions and residence time
required to optimize reactors

e Riser experiments conducted at
Aristotle University of Thessaloniki
(Greece)* obtained high C yields
(34%) with low oxygen content
(11%)

* Our results explain the high yields
for this experiment and indicate
that technical targets are
achievable.

NREL’s DCR riser system

*lliopoulou, E. F., et al. (2014). Green Chemistry, 16(2), 662—674.
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The Effects of Catalyst Acidity on Yields

* Measured deactivation of -zeolite
with different numbers of acid Featured on back cover of
sites Green Chemistry

* Determine yields and coke rates

* Hydrocarbon yield increases with
number of acid sites

* Provide design criteria for our
catalyst partner: Johnson Matthey

Biofuels and
Chemicals

~ B-zeolite
157 ® Aromatics 2 A
2 A Coke R=098 -0.10
El Linear fit (Aromatics) e
§ - - - Linear fit (Coke) 5 2y
510+ R*=0.93 g
2
2, £
£ S 7 A
g —0.05 6o (8?@#33%&\? www.rsc.org/greenchem
=} . Registered charity number: 207850
<54 £
% ;
0 \ \ \ =0.00
0.0 0.5 1.0 15 20 Calvin Mukarakate, et al. Green Chemistry, 16, 4891-4905.

Total catalyst acid sites (mmol/g)
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Steam Stripping Increases Carbon Yield

—€— m/z Aromatics
—— m/z Aromatics with steam

e Addition of steam strips
additional product out of
ZSM-5 catalyst

* Measurements at lab scale

o Increased yields (20%)
o Decreased in Coke (20%) B
o Water reacts with aromatic o

—©— Phenols
—& Phenols with steam

109 Yields (counts)

carbocations to from
phenols
o Manuscript is being 180 water e S @
prepared for publication T
* Steam stripping commonly Lo AI { .
u S e d i n ri S e r Syste m S |i.|6 ||I...|..|.-.|...I-...|.|..||..|.|.-I‘II-. I |||||M 1L |.,-I,.|,|,1|2|4,,.||.|‘|,I |,,,|||.|,.|,I|., |||-, Ll ||,,--|,,II,-,I »
. . O water
* Working with Johnson T I R Q
Matthey to address N U T OV e I
Cata |yStS Sta bl I Ity I n Stea m (. |‘ 7||i ..||-|. Ll I|l||22“u ||.....|I||.. ||.|.I.|.17.|I§I§-|.|.1.9|En.. il
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Selective Hydrogenation of C=C Bonds Will Increase C Yields

Cyclization 0

e Cyclization reactions of C=C bonds are 0 ﬁ Q

— — +H,0 —»coke
undesirable because they lead to the aromatics AL

and coke phorone isophorone mesitylene
Carbonyl coupling

(0] 0]
= L e

acetone

e Carbonyl coupling reactions are desirable
because they lead to carbon chain growth and
reduce the formation of light gas (CO)

mesityl oxide

* Selective hydrogenation of C=C bonds with
coupling of carbonyls will reduce coke and light
gas formation and increase C yield

Catalyst Development
for FY2022 Targets

. . i i Showed that with selective
Mesityl oxide + H, Selective hydrogenation |
0 +Hy o hydrogenation we can
2101 LA reduce aromatic formation
43 98 amu 100 amu ]
and still allow carbonyl
: Coupling coupling
% 17 58 85 2 M -
g 100 100 amu 200 amu
71 — /
oL J”I L 158 2

I 1
50 100 150 200 250
M/Z
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Catalyst Testing for Alternative Products

Addressing FY2022 Targets

* Working with Johnson Matthey to  Products from Upgrading with
Amorphous Silica Alumina
test catalysts for products other O
than aromatic molecules e

. X 4 84 o
. Tested several catalysts (zeolites, *| “/”
hydrotalcites, alumina silicates)

* Some catalysts produce furans

* Producing products other than
aromatic molecules could cut off

ion signal
N
N

: . 9 ZSM-5

pathways to coke formation and 310 O
lead to products that can be -2 | o @

. g 106
coupled to form diesel-range 7 Pl g OO

21 128
molecules ‘ U810 oy
[ " bl ol Ml u..‘ W] ||I .ul....s........

50 10 150 200
m/z
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4 - Relevance

BETO Barriers:

* Tt-H. Bio-Oil Intermediate Stabilization and Vapor Cleanup

o Provided data for SOT for MYPP (C yields, O Content, coke formation,
light gas, aqueous carbon)

o Helping reach FY2022 cost target ($3.31 GGE) through increase C yield
and reduced O content

o Reported limits of Biomass-to-Catalyst ratios
o Demonstrate steam stripping

o Fouling of catalysts in in-situ operation, hot gas filtration reduces
problem

o Measuring benefits of added hydrogen
o We provide information about reaction mechanisms that enable
strategies to improve catalysts
* Tt-L. Knowledge Gaps in Chemical Processes
o Scientific underpinning allow quicker development of technology
o Providing information for design of new catalysts to catalyst providers

NATIONAL RENEWABLE ENERGY LABORATORY



5. Future Work

 FY2017 Targets:
o Go/NoGo decision for use of steam

Determine whether to continue with research into steam stripping and hot gas filtration for
improving yields and cost of vapor phase upgrading. The basis for the Go/No Go will depend
upon economic calculations (by WBS 2.8.2.1) using data generated in this project and the
metric will be whether or not the cost of the product is reduced. 3/30/2016

o Conduct measurements with Laminar Entrained Flow Reactor.
Determine if FY2017 C Yield and oxygen content targets can be met.
o Continue to study the effects of added hydrogen (< 5 bar). Determine
increases in yield and decreases in coking.
 Work with Johnson Matthey to select catalyst to scale up
for experiments in DCR and pilot plant

Steam
addition Furan
SOT Selective formation
hydrogenation

| >
|
Oct, 2014 Oct, 2015 Oct, 2016 Oct, 2017 Oct, 2022
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5. Future Work (cont)

FY2022 Targets:

« Select bifunctional catalyst that can selectively
hydrogenate olefines and allow C-C coupling of
carbonyl compounds

o Use computational modeling (Computational Pyrolysis Consortium)
to help identify low cost catalysts, with high efficiency
hydrogenation and C-C coupling

« Select catalysts that produce furans in high yields
o Determine yields and coking and light gas formation

Steam
addition Furan
SOT Selective formation
hydrogenation

| >
|
Oct, 2014 Oct, 2015 Oct, 2016 Oct, 2017 Oct, 2022
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Summary

* Helping reach technical targets (increase C yield to 44%
decrease O content to 6% by 2022) for CFP by
increasing our understanding of chemical reaction
mechanisms

« Conducting laboratory experiments in collaboration with
computational modeling to explore mechanisms, effects
of catalyst composition and reactor conditions

* Produced results that help establish SOT, compared in-
situ to ex-situ, establish operating ranges, compare
catalyst acidity, increased yields with steam and
hydrogen, and different reaction pathways with other
catalysts.
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Additional Slides
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