DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review

Renewable Hydrogen Production from Biomass Pyrolysis Aqueous Phase

March 27, 2015

Thermochem Conversion Review

PI: Abhijeet P. Borole, Ph.D.

Oak Ridge National Laboratory

Co:PI's & Collaborators: S. Pavlostathis, C. Tsouris, S. Yiacoumi, Georgia Tech; P. Ye, N. Labbe, University of Tennessee, Knoxville, R. Bhave, ORNL

Goal Statement

 Carbon, Hydrogen and Separations Efficiency (CHASE) Project.

<u>Technical Area:</u> Hydrogen Efficiency, subtopic: *Reforming hydrogen from aqueous streams in biomass liquefaction*.

- Goals:
 - Produce hydrogen and improve its recovery from biomass-derived bio-oil aqueous phase to reduce use of fossil fuels and lower lifecycle greenhouse gas emissions.
 - Investigate separation processes to enable the hydrogen production process.

Quad Chart Overview

Timeline

- FOA award CHASE project
- 10/1/2013
- 9/30/2016
- 40% complete

Budget

	200300					
	Total Costs FY 10 –FY 12	FY 13 Costs	FY 14 Costs	Total Planned Funding (FY 15- Project End Date		
DOE Funded	0.0	\$1,697	\$446,349	\$1,686,954		
Project Cost Share (Comp.)*	0.0 By partner: GIT UTK FCE Pall Omni	0.0	\$174,426 (28.1%) \$77,376 \$82,257 - \$13,794 -	\$360,424 \$122,411 \$205,193 \$4,940 \$17,080 \$10,800		

Barriers

- Barriers addressed
 - Tt-M. Hydrogen Production
 - Tt-N. Aqueous Phase Utilization and Wastewater Treatment
 - Tt-O. Separations Efficiency
- Additional barriers addressed
 - Tt-H. Bio-oil Intermediate Stabilization

Partners

- Partners (FY13-14)
 - GIT: Georgia Institute of Technology (40.3%)
 - University of Tennessee, Knoxville (31.3%)
 - FuelCellEtc. Inc. (< 1%)
 - Pall Corporation (6.2%)
 - OmniTech International (< 2%)

1 - Project Overview

Objectives

- Reforming of aqueous phase organics to hydrogen via microbial electrolysis cell (MEC) technology.
- Develop energy-efficient separations to support MEC.
- Demonstrate improvement in hydrogen efficiency.
- Perform life-cycle analysis.

Hydrocarbon

fuels

4 Managed by UT-Battelle for the U.S. Department of Energy

2 – Approach (Technical)

- Produce hydrogen from biooil aqueous phase.organics using MEC
- Investigate separation methods to generate feed for MEC and downstream separations to enable water/biocatalyst recycle
- Critical success factors
 - Developing biocatalysts capable of utilizing biooil
 - Productivity of H₂
 - Sufficient yield of H₂ to upgrade bio-oil

Challenges

- Overcoming toxicity of biooil substrates (phenolics, furan aldehydes, etc.) and enabling complete utilization/removal of acidic and polar compounds.
- Product specificity (to avoid methane production in bioanode)
- Minimizing bioelectrochemical losses and achieving high conversion efficiency
- Developing a continuous process

Go/No-Go criteria:

- <u>12 Mo</u>. 80% conversion at 2 g/Lday in MEC
- <u>30 Mo</u>. 60% H₂ production efficiency based on organic acids

Metrics:

- a) H₂ production rate >5 L/Lday
- b) Coulombic efficiency > 50%

2-Approach-Management

3.0 – Technical Accomplishments/ Progress/Results

- **Objective 1.** Develop a reforming process for efficient conversion of aqueous phase organics to hydrogen via microbial electrolysis.
- Progress:
 - Development of electroactive biocatalyst via directed evolution (25 generations)
 - Demonstration of hydrogen production from bio-oil aqueous phase (boap) (5 L/L-day)
 - Demonstrating conversion of phenolic compounds in bioanode (study 5 model compounds)
 - Development of separation methods (electroseparations, membrane separations)
 - Most important accomplishment:
 - Achieve > 80% conversion of acetic acid and boap at the rate of 2 g/L-day in bioanode (12 Mo. Go/No-Go criteria)

7 Managed by UT-Battelle for the U.S. Department of Energy

- Milestones completed:
 - 1. Complete set-up of MEC and separations experiments (12/2013)
 - 2. Bio-oil production from switchgrass via pyrolysis (03/2014)
 - 3. Initiate bench-scale membrane separations using Pall system (06/2014)
 - Demonstrate 80% conversion of key boap acids at a rate of 2g/L-day (09/2014). First Go/No-go criteria.
 - 5. Demonstrate the anodic conversion of phenolic acids (12/2014)

3.a – Technical Achievements: Bio-oil production

- Feedstock: switchgrass
- Particle size: less than 2mm
- Water content of switchgrass: 7-8 wt%.
- Feeding rate: 10kg/hr
- Reaction temperature: 500°C
- Bio-oil: combined by three condensers
- 1st batch bio-oil: about 10 kg, produced on Jan. 2014
- 2nd batch bio-oil: about 11 kg, produced on Sept. 2014

8 Managed by UT-Battelle for the U.S. Department of Energy Pilot auger pyrolysis reactor at UTK Center for Renewable Carbon

Products from switchgrass fast pyrolysis

Bio-oil	Bio-oil	Bio-char	
produc-	yield	yield	Non-condensable
tion	(wt%)	(wt%)	gas yield (wt%)
1 st batch	50	29	21
2 nd batch	54	29	17

Completion of Milestone 2: Production of bio-oil from switchgrass

Philip Ye, P. Kim, Shoujie Ren

3.b – Technical Achievements Bio-oil and aqueous phase characterization

Aqueous phase separation after adding water: oil: 4:1 followed by centrifugation. This bio-oil aqueous phase (boap) is used for MEC studies.

water in crude bio-oil to aqueous phase

chemicals to aqueous phase

Properties	Crude bio-oil	Aqueous phase
Water content (wt%)	42.3	91.7
Total solid (wt%)	1.7	Not detected
pH value	2.84	3.02
Density (g/ml)	1.13	1.01
Ash (wt%)	0.31	0.085
Viscosity at 40 °C (cSt)	6.5	0.75
TAN, mg KOH/g	137.3	30.1

- water in crude bio-oil to organic phase
- chemicals to organic phase

Bio-oil and aqueous phase were also analyzed by HPLCphotodiode array detector and GC-MS.

A large fraction of the compounds in bio-oil partition into aqueous phase

3.c - Hydrogen Production: Comparison with Existing Technologies

- Bio-oil steam reforming using Pt-Re or metal catalysts:
 - Low H_2 yield (0.1 to 40 %) vs. 64-91% for MEC.
 - High coking vs. no coking in MEC
 - Expensive catalyst vs. regenerable biocatalyst for MEC.
- Bioconversion:

	Process scheme	Theoretical yield	Observed yield	Free energy change (for H ₂ -producing step)	Overall observed energy yield	Comments
1	Hypothetical H ₂ production	12				
2	Hexose to ethanol to H ₂ via autothermal reforming	10	9.5	–265ª kJ/mole	~83%	Prohibitive catalyst (Rh) cost ¹⁰
3	Dark-light fermentation: Glucose \rightarrow acetate \rightarrow H ₂	8	7.1	+164 kJ/mole	59.2%	Limited by light penetra- tion and cost ³⁹
4	Methanogenesis-steam reforming	8	6.0	+261 kJ/mole	50.5%	Mature technology components ^{9,40}
5	MEC	12	8.2	+104.6 kJ/mol	64%	Nascent technology 3,30

^a Processes 3–5 require energy input for the hydrogen-producing step, but this step is energy yielding in process 2. While the hydrogen producing reaction is energy-yielding, energy input is required for production of ethanol from hexose.

Microbial electrolysis is a high efficiency, high yield, practical alternative available for hydrogen production.

¹⁰ Managed by UT-Battelle for the U.S. Department of Energy enabling water recycle in biorefineries using bioelectrochemical cells." **5**(1): 28-36.

3.d - Microbial Electrolysis

- Pyrolysis derived aqueous phase
 - Potential for loss of carbon
 - Emulsifies with oil phase
 - Makes bio-oil unstable
 - Makes bio-oil corrosive
- Microbial electrolysis
 - Conversion of biooil aqueous phase (boap) organics to hydrogen
 - Anode: Conversion of degradable organics to electrons, protons and $\rm CO_2$
 - Cathode: Proton reduction to hydrogen at applied potential of 0.3-1V.
 - Uses electroactive biofilms tolerant to inhibitory and toxic molecules in biooil aqueous phase (furfural, hydroxymethylfurfural, phenolics, etc.)

<u>Pathway</u>: Bio-oil Aqueous Phase (boap) \rightarrow electrons + protons (anode) \rightarrow H₂ (cathode)

3.e – Technical Achievements Anode Biocatalyst Development via Targeted Evolution

Bio-oil

aqueous

Phase

(boap)

- Growth of anode biocatalyst: Electroactive biofilms
- Biocatalyst density
- Population diversity
- Improving current/ electron production using boap via Targeted Evolution of biofilms

Borole, A. P., <u>US Patent</u> 7,695,834, UT-Battelle, USA, **2010**. Borole, A. P., <u>US Patent</u> 8,192,854 B2 UT-Battelle, USA, **2012**.

Borole, A. P., et al., <u>Environ Sci Technol.</u> 2013, 47, 642. Borole, A. P., et al., <u>Energy Environ. Sci.</u> 2012, 4: 4813-4834. Borole, A. P., et al., <u>Bioresour. Technol</u>. 2011, 102, 5098. Borole, A. P., et al., <u>Biochem. Eng. J.</u> 2009, 48, 71.

Successful development of anode biocatalyst for conversion of bio-oil aqueous phase, including removal of acetic acid and phenolic acids.

3.g – Technical Achievements: MEC Operation and Performance

14

41.0% Gammaproteobacteria
19.1% Betaproteobacteria
13.0% Clostridia
12.0% Alphaproteobacteria
5.7% Bacteroidia
3.4% Unclassified
2.8% Deltaproteobacteria
1.3% Synergistia
0.9% Actinobacteria (class)
0.2% Sphingobacteria
0.2% Erysipelotrichi
0.2% Epsilonproteobacteria
0.1% Methanobacteria
0.1% (Koribacteraceae)

Biofilm at two weeks showing initiation of biofilm growth

3.h – Technical Achievements: Conversion of Acetic Acid and Boap

- Acetic acid conversion in bioanode
 - Continuous addition experiment –
 2 g/L-day
 - >80% conversion with > 4 mA current production
 - 0.9 L H₂/L-anode per day
- Boap conversion in bioanode
 - Batch experiment 1 g/L boap
 - Conversion rate > 5 g/L-anode per day
 - 82.7% conversion in 24 hours
 - Continuous feeding 2 g/L-day
 - Current production at 1.5 mA ~ 30% conversion

Alex Lewis, UTK

Completed Milestone 4: Demonstrated conversion of major acid component of boap at 2 g/L-day with 80% conversion (1st Go/No-go criteria).

3.i – Technical Achievements - Understanding Conversion of Furanic and Phenolic Compounds in Bioanode

- Investigate inhibition by phenolic compounds and furan aldehydes
- Model compounds:
 - Furfural (FF)
 - Hydroxymethylfurfural (HMF)
 - Syringic acid (SA)
 - ✤ Vanillic acid (VA)
 - ✤ 4-Hydroxybenzoic acid (HBA)
- Results:
 - ✤ No inhibition under 1200 mg/L
 - Served as substrates for anode microorganisms, but conversion limited by accumulation of intermediates.

Completed Milestone 5: Demonstrate the anodic conversion of phenolic acids

Geora

Xiaofei Zeng, SG. Pavlostathis

3.j – Technical Achievements Pathways for Conversion of Furanic and Phenolic Compounds in Bioanode

3.k – Technical Achievements Further development of MEC

 Production of hydrogen from boap in batch MEC studies. H₂ Productivity, L/L-anode-day

	Targets for commercial consideration	Start of Project (2013)	February 2	2015	
Hydrogen production rate	MEC: 4 L/L-day from sugars		> 2 L/L-d phase	lay from bio-oil aqueous	
Anode current density, A/m ²	20	< 2 for boap	5 for boap		
Anode CE	>90%	< 40% [7]	50-54%	capability of MEC to produce H ₂ from	
Applied voltage	< 0.6 V	1.0 V [14]	0.9V	boap with high efficiency and	
Cathode CE	>90% at 0.6V or less	80% with 1 V (using acetic acid)	82-96%	productivity.	

Performance and efficiency metrics for MEC development.

18 Managed by UT-Battelle for the U.S. Department of Energy

3.m – Technical Achievements Bio-oil separations

Induced separation of acidic compounds:

3.n – Technical Achievements Membrane separation of MEC effluent for water and biocatalyst recycle

- Evaluate MEC cellular biomass effluent with polymer and ceramic membranes
- Characterize MEC effluent particle size distribution
- Establish long term flux stability over time
- Demonstrate effective fouled membrane cleaning

MEC effluent particle size preliminary analysis

Particle size range: 0.1 μ m to ~1000 μ m 10 % of particles up to 2 μ m 50th percentile was ~140 μ m

Filtration Performance

Membrane flux: 40 -60 L/hr-m². Polymeric membranes better than ceramic zirconia.

Tim Mains, Ramesh Bhave, ORNL

Completed Milestone 3: Set-up and initiate membrane separations experiments. Results show potential of membranes to separate biocatalyst from MEC effluent.

4 - Relevance

- Contributions to BETO MYPP goals:
 - Developed strategy for improving carbon and hydrogen conversion efficiency and demonstrated feasibility of conversion using switchgrass as feedstock (Barriers Tt-M, Tt-N)
 - Initiated investigations into separations technology for extracting acidic compounds from boap and for water recycle (Tt-O)
 - Address 'Balance of Plant' issues: wastewater treatment, minimizing organics in aqueous phase, more efficient carbon and hydrogen usage process recycle (p. 2-70 of mypp)
 - Address knowledge gaps in chemical processes via biooil characterization, understanding and driving separation and conversion of key problem (acidic/polar) compounds (Tt-H, Tt-L).
- Invention disclosures
 - Hydrogen production from pyrolysis-derived aqueous phase (February 2015).
 - Separation of acidic molecules from biooil (in preparation)

22

4 – Relevance...

- Application in emerging bioenergy industry
 - Establish MEC as core technology for hydrogen production in thermochemical biooil upgrading
 - Potential application for producing hydrogen from fermentation effluent and lipidextracted algae
- Support of strategic goals (Section 2.2.2.1 of mypp)
 - Use of extracted electrons for increasing efficiency of production of biofuels (butanol) via bioelectrochemical systems (p. 2-71, 2-79 –'yet-to-be-discovered technologies')
 - Production of biochemicals (1,3-propanediol; 1,4-butanediol)
- Sustainability analysis and communication
 - Consumptive water use, wastewater treatment.

5 – Future Work

- Identify limitations to boap conversion and hydrogen production in MEC via impedance spectroscopy, biofilm diversity analysis and detailed substrate/product characterization
- Increase biocatalyst density to improve H₂ productivity
- Improve substrate conversion in continuous process to improve metrics of hydrogen production (C.2.DL.2, C.1.GN.2)
 - Current density > 10 A/m²
 - Anode Coulombic efficiency > 60%, 90%+ conversion of major acid (C.1.DL.1)
 - Hydrogen yield > 60%
 - H_2 rate of production > 5 L/L-day (TRL 3, technical feasibility of MEC)
- Develop electroseparation technology for oil-water separation (B.2.ML.1)
- Perform LCA analysis of MEC process (F.1.ML.1)
- Prioritizing thermochemical R&D barriers (p. 2-81 of mypp):
 - Understand the relationship between feedstock quality and conversion (Extend beyond CHASE project feedstock to wood chips and MSW)
 - Strategies for conserving carbon and hydrogen in conversion
 - Enable high-performance separations technologies to improve yields 24

Summary

- <u>Overview</u>: Focus on improving hydrogen efficiency via a hybrid biocatalytic-electrocatalytic process (MEC), using a switchgrass-derived stream, while addressing carbon and separations efficiency.
- Holistic <u>approach</u> covering biooil production, characterization, conversion of boap to H₂, process recycle and LCA analysis.
- <u>Accomplished development of an electroactive biocatalyst and MEC to convert boap to H₂ at high efficiency. Demonstrated >80% conversion of acidic compounds in MEC.
 </u>
- Addressed C, H and separations efficiency barriers Tt-M, Tt-N, Tt-O relevant to BETO.
- <u>Future work</u>: Improve boap conversion and develop a continuous process to produce H_2 at > 5 L/L-day and > 60% Coulombic efficiency.

Additional Slides

Focus: Hydrogen

Figure 2-27: Conversion of woody feedstocks to renewable gasoline and diesel-finished fuels via fast pyrolysis

Ref: BETO Multi-year Program Plan

Hydrogen production expenses: Capital costs: 18% for natural gas reformer Operating Expenses: cost of natural gas, steam.

Minimizing natural gas use has potential to minimize operating expenses, while meeting GHG emission goals to meet Renewable fuel standard (RFS2).

3. - Biooil and boap characterization...

Classifications	Major compounds	Concentration in aqueous phase(g/L)	Method
	Acetic acid	11.96	HPLC
Carboxylic acid	Propionic acid	1.89	HPLC
	Vanillic acid	2.69	HPLC
Sugars	Levoglucosan	15.33	HPLC
	Furfural	1.01	HPLC
Furans	HMF	0.54	HPLC
	2(5H)-Furanone	1.17	GC
Alashala	1,3-propanediol	1.84	GC
Alcohols	1-hydroxybutanone	1.35	GC
Aldehydes and	Cyclohexanone	0.07	GC
ketones	3-methyl-1,2-cyclopentanedione	0.46	GC
	1,2-benzendiol	1.77	HPLC
	Phenol	1.8	HPLC
Phenols and alkyl	2-methoxyphenol	0.25	GC
phenols	2-methyl-4-methyphenol	0.07	GC
	2,6-Dimethoxyphenol	0.26	GC
	3-ethylphenol	0.56	GC
9 Managed by UT-Battelle	Sum	43.01	Že Oak Ridge

Biofilm parameters (Dependent variables) Relative exoelectrogen population

5.

6. Characteristics of EPS layer

- 1. Biofilm growth rate
- 2. Specific rate of electron transfer
- 3. Ability to synthesize redox-active mediators Extent of substrate mineralization
- 4. Ability to grow nanowires and perform DE**8**. Substrate specificity

Borole AP, Reguera G, Ringeisen B, Wang Z, Feng Y, Kim, BH, 2011, Energy Environ. Sci. (Review paper) Electroactive Biofilms: Current Status and Future Research Needs, 4:4813-4834

MEC optimization is a complex process, requiring system design, process and biological parameter optimization.

Publications, Patents, Presentations, Awards, and Commercialization

• Invention disclosures:

- Hydrogen production from pyrolysis-derived aqueous phase (submitted February 27, 2015).
- Separation of acidic molecules from bio-oil
- Publications/Manuscripts:
 - Lewis A., Ren S., Ye X., Kim P., Labbe N., Borole A. P., Production of hydrogen from switchgrass-derived bio-oil via microbial electrolysis. In preparation for submission to Biores. Technol.
 - Zeng X., Borole A. P., Pavlostathis S. G. Hydrogen Gas Production from Furanic and Phenolic Compounds in a Batch Microbial Electrolysis Cell. In preparation for submission to Environ. Sci. Technol.
 - Ren et al., Comprehensive characterization of bio-oil and its organic and aqueous fractions derived from switchgrass pyrolysis, manuscript in preparation.
 - Park L.K.-Y.; Ren S.; Yiacoumi S.; Ye X.P; Borole A.P.; Tsouris C., "Liquid Extraction of Bio-oil Components," in preparation.
- Presentations
 - Kyoung Eun Park, Liquid-Liquid Extraction of Bio-Oil Components, an oral presentation at AIChE Meeting November 2014, Session:
 Sustainable Chemicals: Advances in Innovative Processes
 - Alex Lewis, Hydrogen Production from Biomass Via Microbial Electrolysis, an oral presentation at AIChE Meeting November 2014, Session: Fundamentals of Hydrogen Production.
 - Shoujie Ren, Characterization of Aqueous Phase Bio-Oil Derived from Switchgrass Pyrolysis, an oral presentation at AIChE Meeting November 2014, Session: Thermochemical Conversion of Biomass II
 - Xiaofei Zeng, Conversion of Furanic and Phenolic Compounds to Hydrogen Gas in a Microbial Electrolysis Cell, an oral presentation at AIChE Meeting November 2014, Session: Recovery of Value-Added Co-Products from Biorefinery Residuals and Effluents
 - Abhijeet P. Borole, Recovery of Bioelectricity and Hydrogen from Biorefinery Effluents, an oral presentation at AIChE Meeting November 2014, Session: Integrating Industrial Waste into Biorefineries

